Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
0; 1; 4; 9; 16; 25; 36; 49; 64; 81; 100; 121; 144; 169; 196; 255; 256; 289; 324; 361; 400; 441; 484; 529; 576; 625; 676; 729; 784; 841; 900; 961
Có 32 số chính phương nhỏ hơn 1000 nhé bạn
Gọi số tự nhiên cần tìm là a ( a\(\in\)N, a <1000).
Vì a: 25;20 và 30 đều dư 15 nên (a-15)\(\in\)BC(20,25,30)
BCNN(20,25,30)=300
\(\Rightarrow\)(a-15)\(\in\)B(300)={0;300;600;900;1200;...}
\(\Rightarrow\)a \(\in\){15;315;615;915;1215;...}
Do a chia cho 41 không dư nên a\(⋮\)41; a<1000 nên a = 615
Vậy số tự nhiên cần tìm là 615
\(3S=3+3^2+3^3+3^4+...+3^{31}\)
\(2S=3S-S=3^{31}-1\)
\(S=\frac{3^{31}-1}{2}=\frac{\left(3^4\right)^7.3^3-1}{2}\)
\(3^4\) có tận cùng là 1 => \(\left(3^4\right)^7\)có tận cùng là 1; \(3^3\)có tận cùng là 7
=> \(\left(3^4\right)^7.3^3-1\) có tận cùng là 6 => S có tận cùng là 3 hặc 8 và S không phải số chính phương vì số chính phương không bao giờ có tận cùng là 2; 3; 7; 8
Đặt A là số cần tìm. Ta có: A= 5m^5 = 3.n^3 = 2.p^2
Như vậy A có các ước nguyên tố 5,3,2. Mà A là số bé nhất thỏa mãn nên ta có A = 5^a.3^b.2^c
Xét nhân tử 5^a, vì A/3=n^3, A/2=p^2 nên n^3,p^2 chứa nhân tử 5^a=> a phải chia hết cho 2,3
Mặt khác A=5.m^5 nên a chia 5 dư 1 => a nhỏ nhất là 6
Tương tự ta có b chia hết cho 2,5, chia 3 dư 1 nên b nhỏ nhất là 10
c chia hết cho 5,3 chia 2 dư 1 nên c nhỏ nhất là 15
Vậy A nhỏ nhất là 5^6.3^10.2^15. Thử lại thỏa mãn.
0; 1; 4; 9; 16; 25; 36; 49; 64; 81; 100; 121; 144; 169; 196; 255; 256; 289; 324; 361; 400; 441; 484; 529; 579; 625; 676; 729; 784; 841; 900; 961.
MK nghĩ là có 32 số cơ