Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
\(\Leftrightarrow\frac{1}{x+y}=\frac{x+y}{xy}\Rightarrow\left(x+y\right)\left(x+y\right)=xy\)
=>(x+y)2=xy
Vì \(\left(x+y\right)^2\ge0\) với mọi x,y \(\in\) R
xy < 0(do x;y trái dấu)
=>\(\left(x+y\right)^2\ne xy\)
=>ko có cặp (x;y) nào thỏa mãn đề bài
Ta có :1/(x+y)=1/x+1/y
=>1/(x+y)=(x+y)/xy
=>(x+y)(x+y)=xy
=>(x+y)2=xy
Vì (x+y)2 >= 0 với mọi x ,y(*)
Mà xy<0( do x,y trái dấu). Mâu thuẫn với (*)
=> không tồn tại (x;y) thoả mãn đề bài
vậy.........
Đat:\(6\left(x-\frac{1}{y}\right)=3\left(y-\frac{1}{z}\right)=2\left(z-\frac{1}{x}\right)=xyz-\frac{1}{xyz}=k\)
\(\Rightarrow x-\frac{1}{y}=\frac{1}{6}k;y-\frac{1}{z}=\frac{1}{3}k;z-\frac{1}{x}=\frac{1}{2}k\)
\(\Rightarrow\left(x-\frac{1}{y}\right)\left(y-\frac{1}{z}\right)\left(z-\frac{1}{x}\right)=\left(xyz-\frac{1}{xyz}\right)-\left(x-\frac{1}{y}\right)-\left(y-\frac{1}{z}\right)-\left(z-\frac{1}{x}\right)=0=\frac{k^3}{36}\)
\(\Rightarrow k=0\Rightarrow xy=yz=zx=1\Rightarrow\orbr{\begin{cases}x=y=z=1\\x=y=z=-1\end{cases}}\left(giaipt\right)\)
=> x+y/xy =1/3 =>3.[(x-3)+3]=(x-3).y TH1:x-3=1;y-3=9 TH3:x-3= -1;y-3= -9 Vậy{x;y}={4;12};{6;6};{2;-6}
=>(x+y).3=xy =>3.(x-3)+9=(x-3).y =>x=4;y=12(TM) =>x=2;y= -6(TM)
=>3x + 3y=xy =>9=(x-3)(y-3) TH2:x-3=3;y-3=3 TH4:x-3=3;y-3=3
=>3x=xy-3y =>x-3;y-3 thuộc Ư(9) =>x=6;y=6(TM) =>x=0;y=0(L)
=>3x=(x-3).y
câu 1 : 0 số cặp x y
câu 2 : ko có giá trị x thỏa mãn
câu 3 : GTLN A=2013
câu 4 : AB=2cm
câu 5: x+y=16
k cho mik nha bạn