\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2016

không có cặp nào thoanmanx đè bài

10 tháng 3 2016

\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

\(\Leftrightarrow\frac{1}{x+y}=\frac{x+y}{xy}\Rightarrow\left(x+y\right)\left(x+y\right)=xy\)

=>(x+y)2=xy

\(\left(x+y\right)^2\ge0\) với mọi x,y \(\in\) R

xy < 0(do x;y trái dấu)

=>\(\left(x+y\right)^2\ne xy\)

=>ko có cặp (x;y) nào thỏa mãn đề bài

9 tháng 3 2016

ko có cặp nào nha bạn

9 tháng 3 2016

Ta có :1/(x+y)=1/x+1/y

=>1/(x+y)=(x+y)/xy

=>(x+y)(x+y)=xy

=>(x+y)2=xy

 Vì (x+y)2 >= 0 với mọi x ,y(*)

Mà xy<0( do x,y trái dấu). Mâu thuẫn với (*)

=> không tồn tại (x;y) thoả mãn đề bài

 vậy.........

6 tháng 9 2016

Giả sử tồn tại x,y trái dấu thỏa mãn

Khi đo ta có \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)

=> (x+y)2=xy 

Đẳng thức trên là vô lí vì (x+y)2\(\ge\)0

Còn xy nhỏ hơn 0 vì x,y trái dấu

Vậy ko có x,y trái dấu thỏa mãn đề bài

6 tháng 9 2016

1/x+y=1/x+1/y
1/x+y=x+y/xy( nhân vào như bài toán bình thường)
=>(x+y)(x+y)=1.xy
=>(x+y)2=xy
x, y cùng dấu thì phép tính mới dương

2 tháng 7 2017

Ta dùng phương pháp phản chứng :

giả sử tồn tại hai số hữu tỉ x và y thỏa mãn đẳng thức\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

suy ra : \(\frac{1}{x+y}=\frac{y+x}{xy}\Leftrightarrow\left(x+y\right)^2=xy\)

đẳng thức này không xảy ra vì \(\left(x+y\right)^2>0\), còn xy < 0 ( do x,y là hai số trái dấu , không đối nhau )

Vậy không tồn tại hai số hữu tỉ x và y trái dấu , không đối nhau thỏa mãn đề bài

8 tháng 3 2016

câu 1 : 0 số cặp x y

câu 2 : ko có giá trị x thỏa mãn

câu 3 : GTLN A=2013

câu 4 : AB=2cm

câu 5: x+y=16

k cho mik nha bạn

25 tháng 8 2018

Ta có \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

\(\Rightarrow\frac{1}{x+y}=\frac{y+x}{xy}\)

\(\Rightarrow xy=\left(x+y\right)^2\)

Vì \(\left(x+y\right)^2\ge0\)nên \(xy\ge0\)'

Do đó không tồn tại x,y trái dấu và không đối nhau

Vậy ...

25 tháng 8 2018

Ta dùng pháp phản chứng:   

Giả sử tồn tại 2 số hữu tỉ x và y  trái dấu thỏa mãn đẳng thức: \(\frac{1}{x+y}\) = \(\frac{1}{x}+\frac{1}{y}\)

=> \(\frac{1}{x+y}\)\(\frac{y+x}{xy}\)  <=> \(\left(x+y\right)^2\)  = xy

Điều này vô lí vì  \(\left(x+y\right)^2\)  > 0 còn xy < 0( vì x và y trái dấu , không đối nhau). Vậy không tồn tại 2 số hữu tỉ x và y trái dấu , không đối nhau thảo mãn đề bài.Chấm cho mình nha.