Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này sẽ giải nếu x,y là số nguyên
ĐKXĐ: x≠2
A=\(\dfrac{3\left(x++y\right)\left(x-2\right)+1}{x-2}\)
A=\(\dfrac{3\left(x+y\right)\left(x-2\right)}{x-2}+\dfrac{1}{x-2}\)
A=3(x+y)+\(\dfrac{1}{x-2}\)
Vì x;y; A là số nguyên nên \(\dfrac{1}{x-2}\) cũng là số nguyên
hay x-2⋮1
hay x-2ϵƯ(1)=(-1;1)
suy ra x=1;3
tự tìm y
ta đặt A=:\(\left(\frac{3x-5}{9}\right)^2+\left(\frac{3y+1}{3}\right)^2=0\)
ta thấy : \(\left(\frac{3x-5}{9}\right)^2\ge0\)với mọi x thuộc R
\(\left(\frac{3y+1}{3}\right)^2\ge0\) với mọi x thuộc R
=> A=0 khi \(\begin{cases}\left(\frac{3x-5}{9}\right)^2=0\\\left(\frac{3y+1}{3}\right)^2=0\end{cases}\)<=> x=5/3 và y=-1/3
\(\left(\frac{3x-5}{9}\right)^2+\left(\frac{3y+1}{3}\right)^2=0\)
\(\left(\frac{9x^2-25}{81}\right)+\left(\frac{9y+1}{9}\right)=0\)
\(\Rightarrow\begin{cases}\left(\frac{9x^2-25}{81}\right)=0\\\left(\frac{9y+1}{9}\right)=0\end{cases}\Leftrightarrow\begin{cases}\left(9x^2-25=0\right)\\\left(9y+1\right)=0\end{cases}}\)\(\Leftrightarrow\begin{cases}9x^2=25\\9y=-1\end{cases}\Leftrightarrow\begin{cases}x^2=\frac{25}{9}\\y=\frac{-1}{9}\end{cases}\Leftrightarrow}\begin{cases}x=\pm\frac{5}{3}\\y=\frac{-1}{9}\end{cases}}\)
de giai co