K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 4 2022

Gọi chiều rộng của mảnh đất ban đầu là x (m) với x>1

Chiều dài ban đầu của mảnh đất: \(x+3\) (m)

Diện tích ban đầu của mảnh đất: \(x\left(x+3\right)\)

Chiều dài lúc sau: \(x+3+2=x+5\left(m\right)\)

Chiều rộng lúc sau: \(x-1\) (m)

Diện tích lúc sau: \(\left(x-1\right)\left(x+5\right)\)

Do diện tích mảnh đất ko đổi nên ta có pt:

\(x\left(x+3\right)=\left(x-1\right)\left(x+5\right)\)

\(\Leftrightarrow x^2+3x=x^2+4x-5\)

\(\Leftrightarrow x=5\left(m\right)\)

Vậy mảnh đất ban đầu rộng 5m, dài 8m

24 tháng 5 2023

cho mình hỏi tại sao x = 5 với ạ ?

 

Gọi chiều rộng là x

Chiều dài là x+8

Theo đề, ta có: \(\left(x+3\right)\cdot\dfrac{6}{5}\left(x+8\right)=x\left(x+8\right)+120\)

\(\Leftrightarrow\dfrac{6}{5}\left(x^2+11x+24\right)=x^2+8x+120\)

\(\Leftrightarrow\dfrac{6}{5}x^2+\dfrac{66}{5}x+\dfrac{144}{5}-x^2-8x-120=0\)

\(\Leftrightarrow x^2\cdot\dfrac{1}{5}+\dfrac{26}{5}x-\dfrac{456}{5}=0\)

=>x=12

Vậy: Chiều rộng ban đầu là 12m

Chiều dài ban đầu là 20m

Gọi chiều rộng là x

Chiều dài là x+8

Theo đề, ta có: 1/5(x+8)(x+3)=x(x+8)+120

=>x=12

=>CHiều rộng và chiều dài ban đầu lần lượt là 12m và 20m

Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng ban đầu của hình chữ nhật(Điều kiện: a>0; b>0 và \(a\ge b\))

Vì chiều dài hơn chiều rộng 5m nên ta có phương trình: a-b=5(1)

Diện tích ban đầu của hình chữ nhật là:

\(ab\left(m^2\right)\)

Vì khi giảm chiều dài đi 2m và tăng chiều rộng gấp đôi thì diện tích lớn hơn diện tích ban đầu 240m2 nên ta có phương trình:

\(\left(a-2\right)\cdot2b=ab+240\)

\(\Leftrightarrow2ab-4b=ab+240\)

\(\Leftrightarrow ab-4b=240\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}a-b=5\\ab-4b=240\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\b\left(5+b\right)-4b=240\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\5b+b^2-4b=240\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\b^2+b-240=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\b^2+16b-15b-240=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\b\left(b+16\right)-15\left(b+16\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left(b+16\right)\left(b-15\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left[{}\begin{matrix}b+16=0\\b-15=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left[{}\begin{matrix}b=-16\left(loại\right)\\b=15\left(nhận\right)\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20\\b=15\end{matrix}\right.\)(thỏa ĐK)

Vậy: Chiều dài ban đầu là 20m; Chiều rộng ban đầu là 15m

27 tháng 2 2022

Gọi chiều dài ban đầu là : x ( x > 0 )

Chiều rộng ban đầu là : x - 9 ( m )

Chiều dài sau khi tăng là : x + 3 ( m )

Chiều rộng sau khi giảm là : x - 10 ( m )

Vì diện tích hình chữ nhật không đổi nên ta có phương trình:

\(x\left(x-9\right)=\left(x+3\right)\left(x-10\right)\)

\(\Leftrightarrow x^2-9x=x^2-7x-30\)

\(\Leftrightarrow9x-7x=30\)

\(\Leftrightarrow x=15\)   ( nhận )

Diện tích hình chữ nhật ban đầu là:

\(15\left(15-9\right)=90\left(m^2\right)\)

Vậy diện tích hình chữ nhật ban đầu là: 90 m2

3 tháng 4 2015

Gọi chiều dài HCN là x              => chiều rộng là x - 3

Khi tăng chiều dài thêm 1/4 của nó tức là: x + 1/4x = 5/4x

Khi tăng chiều rộng thêm 1cm tức là x - 3 + 1 = x - 2

Diện tích ban đầu của HCN là x(x - 3)

Diện tích sau khi thay đổi các kích thước là: 5/4x(x - 2)

Theo đề bài ta có phương trình:     x(x - 3) + 20 = 5/4x.(x - 2)

                                                 <=>  x2 - 3x + 20 = 5/4x2 - 5/2x

                                                 <=>  1/4x2 + 1/2x - 20 = 0

                                                 <=>  x = 8 (n)        x = - 10 (l)

=> Chiều dài HCN là 8cm

=> Chiều rộng HCn là 5cm

21 tháng 2 2020

gọi x (cm)là chiều dài ban đầu của hcn 

    y (cm) là chiều rômgj ban đầu của hcn

...CV=70  \(2\left(x+y\right)=70\Rightarrow x+y=35\left(1\right)\)

nếu chiều dài tăng.......tăng thêm 14 \(\Rightarrow PT:\left(x+3\right)\left(y-2\right)=xy+14\left(2\right)\)

từ (1) và(2) ta có hệ pt:\(\hept{\begin{cases}x+y=35\\\left(x+3\right)\left(y-2\right)=xy+14\end{cases}}\)

bạn tính đc X=17 và Y=18 .sau đó kết luận là đc ><