K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 11 2021

Đề thế này thì không thể hiểu được.

Em sử dụng công cụ soạn thảo toán học để đăng lại đề nhé, nó ở đây:

undefined

Mũ thì bấm "^" là được

Còn kí hiêu tổ hợp kiểu \(C_n^k\) thì ở đây:

undefined

Sau đó chọn

undefined

Hoặc đơn giản hơn thì vào chỗ gõ công thức (biểu tượng tổng sigma nói ở trên), sau đó bấm C, rồi shift _, bấm tiếp mũi tên sang phải ở bàn phím, rồi shift ^, tiếp tục mũi tên sang phâir

2 tháng 11 2021

S= 2nC0n + 2n-2 Cn-2n +2n-4 Cnn-4 +...+Cnn

21 tháng 3 2021

Ta có : \(C^k_{2n+1}=C^{2n+1-k}_{2n+1}\)

\(\Rightarrow2VT=C^1_{2n+1}+C^2_{2n+1}+...+C^{2n}_{2n+1}=2^{21}-2\)

\(\Leftrightarrow2^{2n+1}-C^0_{2n+1}-C^{2n+1}_{2n+1}=2^{21}-2\)

\(\Leftrightarrow2n+1=21\Leftrightarrow n=10\)

21 tháng 3 2021

\(\sum\limits^{2n+1}_{k=0}C^k_{2n+1}=\left(1+1\right)^{2n+1}=2^{2n+1}\)

Lại có \(C^0_{2n+1}+C^1_{2n+1}+...+C^n_{2n+1}=C^{2n+1}_{2n+1}+C^{2n}_{2n+1}+...+C^{n+1}_{2n+1}\)

\(\Rightarrow C^0_{2n+1}+C^1_{2n+1}+...C^n_{2n+1}=\dfrac{2^{2n+1}}{2}\)

\(\Leftrightarrow2^{20}-1=2^{2n}-C^0_{2n+1}\)

\(\Leftrightarrow2^{20}-1=2^{2n}-1\)

\(\Leftrightarrow2n=20\)

\(\Leftrightarrow n=10\)

22 tháng 11 2017

1/ \(2C^k_n+5C^{k+1}_n+4C^{k+2}_n+C^{k+3}_n\)

\(=2\left(C^k_n+C_n^{k+1}\right)+3\left(C^{k+1}_n+C^{k+2}_n\right)+\left(C^{k+2}_n+C^{k+3}_n\right)\)

\(=2C_{n+1}^{k+1}+3C_{n+1}^{k+2}+C_{n+1}^{k+3}\)

\(=2\left(C_{n+1}^{k+1}+C_{n+1}^{k+2}\right)+\left(C_{n+1}^{k+2}+C^{k+3}_{n+1}\right)\)

\(=2C_{n+2}^{k+2}+C_{n+2}^{k+3}=C_{n+2}^{k+2}+\left(C_{n+2}^{k+2}+C_{n+2}^{k+3}\right)=C_{n+2}^{k+2}+C_{n+3}^{k+3}\)

28 tháng 11 2017

Áp dụng ct:C(k)(n)=C(k)(n-1)+C(k-1)(n-1) có:
................C(k-1)(n-1)= C(k)(n) - C(k)(n-1)
tương tự: C(k-1)(n-2)= C(k)(n-1) - C(k)(n-2)
................C(k-1)(n-3)= C(k)(n-2) -C(k)(n-3)
.........................................
................C(k-1)(k-1)= C(k)(k) (=1)
Cộng 2 vế vào với nhau...-> đpcm

NV
22 tháng 12 2020

Xét khai triển:

\(\left(1+2x\right)^{2n+1}=C_{2n+1}^0+C_{2n+1}^1.2x+C_{2n+1}^2\left(2x\right)^2+...+C_{2n+1}^{2n+1}\left(2x\right)^{2n+1}\)

Đạo hàm 2 vế:

\(2\left(2n+1\right)\left(1+2x\right)^{2n}=2C_{2n+1}^1+2^2C_{2n+1}^2x+...+\left(2n+1\right)2^{2n+1}C_{2n+1}^{2n+1}x^{2n}\)

\(\Leftrightarrow\left(2n+1\right)\left(1+2x\right)^{2n}=C_{2n+1}^1+2C_{2n+1}^2x+...+\left(2n+1\right)2^{2n}C_{2n+1}^{2n+1}x^{2n}\)

Cho \(x=-1\) ta được:

\(2n+1=C_{2n+1}^1-2C_{2n+1}^2+...+\left(2n+1\right)2^{2n}C_{2n+1}^{2n+1}\)

\(\Rightarrow2n+1=2019\Rightarrow n=1009\)

29 tháng 10 2016

chỗ nào không cứ hỏi mình nhébanhqua

Hoán vị, chỉnh hợp, tổ hợp

25 tháng 4 2016

Giải:

Điều kiện là n\(\ge\)2, n\(\in\)Z

Ta có 

(1) \(\Leftrightarrow\)\(\frac{\left(n+2\right)!}{\left(n-1\right)!3!}\)+\(\frac{\left(n+2\right)!}{n!2!}\)>\(\frac{5}{2}\)\(\frac{n!}{\left(n-2\right)!}\)

     \(\Leftrightarrow\)\(\frac{n\left(n+1\right)\left(n+2\right)}{6}\)+\(\frac{\left(n+1\right)\left(n+2\right)}{2}\)>\(\frac{5\left(n-1\right)n}{2}\)

     \(\Leftrightarrow\)n(n2+3n+2) + 3(n2+3n+2) > 15(n2-n)

     \(\Leftrightarrow\)n3-9n2+26n+6>0

     \(\Leftrightarrow\)n(n2-9n+26)+6>0                (1)

Xét tam thứ bậc hai n2-9n+26, ta thấy \(\Delta\)=81-104<0

Vậy n2-9n+26>0  với mọi n. Từ đó suy ra với mọi n\(\ge\)2 thì (1) luôn luôn đúng. Tóm lại mọi số nguyên n\(\ge\)2 đều là nghiệm của (1).

NV
22 tháng 12 2020

Giả sử có 1 nhóm người gồm 2n người, trong đó có n nam và n nữ.

Chọn n người từ 2n người đó, ta thực hiện theo 2 cách:

- Cách 1: chọn bất kì, có \(C_{2n}^n\) cách (1)

- Cách 2: giả sử trong n người được chọn có k nữ và \(n-k\) nam

Chọn k nữ từ n nữ, có \(C_n^k\) cách

Chọn \(n-k\) nam từ n nam, có \(C_n^{n-k}\) cách

Số cách thỏa mãn: \(\sum\limits^n_{k=0}C_n^kC_n^{n-k}=\sum\limits^n_{k=0}C_n^kC_n^k=\sum\limits^n_{k=0}\left(C_n^k\right)^2\) (2)

(1); (2) \(\Rightarrow\sum\limits^n_{k=0}\left(C_n^k\right)^2=C_{2n}^n\)

NV
10 tháng 4 2020

Xét khai triển

\(\left(x+1\right)^{2n+1}=C_{2n+1}^0+C_{2n+1}^1x+...+C_{2n+1}^{2n}x^{2n}+C_{2n+1}^{2n+1}x^{2n+1}\)

Cho \(x=1\) ta được:

\(2^{2n+1}=C^0_{2n+1}+C_{2n+1}^1+...+C_{2n+1}^{2n}+C_{2n+1}^{2n+1}\)

\(\Leftrightarrow2^{2n+1}=2+C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^{2n}\)

\(\Leftrightarrow2^{2n+1}-2=C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^{2n}\)

\(\Leftrightarrow2^{10}-1=2^{2n+1}-2\Rightarrow2^{2n+1}=2^{10}+1\)

Không tồn tại n thỏa mãn yêu cầu bài toán (bạn xem lại đề bài)