Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thế này thì không thể hiểu được.
Em sử dụng công cụ soạn thảo toán học để đăng lại đề nhé, nó ở đây:
Mũ thì bấm "^" là được
Còn kí hiêu tổ hợp kiểu \(C_n^k\) thì ở đây:
Sau đó chọn
Hoặc đơn giản hơn thì vào chỗ gõ công thức (biểu tượng tổng sigma nói ở trên), sau đó bấm C, rồi shift _, bấm tiếp mũi tên sang phải ở bàn phím, rồi shift ^, tiếp tục mũi tên sang phâir
Ta có : \(C^k_{2n+1}=C^{2n+1-k}_{2n+1}\)
\(\Rightarrow2VT=C^1_{2n+1}+C^2_{2n+1}+...+C^{2n}_{2n+1}=2^{21}-2\)
\(\Leftrightarrow2^{2n+1}-C^0_{2n+1}-C^{2n+1}_{2n+1}=2^{21}-2\)
\(\Leftrightarrow2n+1=21\Leftrightarrow n=10\)
\(\sum\limits^{2n+1}_{k=0}C^k_{2n+1}=\left(1+1\right)^{2n+1}=2^{2n+1}\)
Lại có \(C^0_{2n+1}+C^1_{2n+1}+...+C^n_{2n+1}=C^{2n+1}_{2n+1}+C^{2n}_{2n+1}+...+C^{n+1}_{2n+1}\)
\(\Rightarrow C^0_{2n+1}+C^1_{2n+1}+...C^n_{2n+1}=\dfrac{2^{2n+1}}{2}\)
\(\Leftrightarrow2^{20}-1=2^{2n}-C^0_{2n+1}\)
\(\Leftrightarrow2^{20}-1=2^{2n}-1\)
\(\Leftrightarrow2n=20\)
\(\Leftrightarrow n=10\)
1/ \(2C^k_n+5C^{k+1}_n+4C^{k+2}_n+C^{k+3}_n\)
\(=2\left(C^k_n+C_n^{k+1}\right)+3\left(C^{k+1}_n+C^{k+2}_n\right)+\left(C^{k+2}_n+C^{k+3}_n\right)\)
\(=2C_{n+1}^{k+1}+3C_{n+1}^{k+2}+C_{n+1}^{k+3}\)
\(=2\left(C_{n+1}^{k+1}+C_{n+1}^{k+2}\right)+\left(C_{n+1}^{k+2}+C^{k+3}_{n+1}\right)\)
\(=2C_{n+2}^{k+2}+C_{n+2}^{k+3}=C_{n+2}^{k+2}+\left(C_{n+2}^{k+2}+C_{n+2}^{k+3}\right)=C_{n+2}^{k+2}+C_{n+3}^{k+3}\)
Áp dụng ct:C(k)(n)=C(k)(n-1)+C(k-1)(n-1) có:
................C(k-1)(n-1)= C(k)(n) - C(k)(n-1)
tương tự: C(k-1)(n-2)= C(k)(n-1) - C(k)(n-2)
................C(k-1)(n-3)= C(k)(n-2) -C(k)(n-3)
.........................................
................C(k-1)(k-1)= C(k)(k) (=1)
Cộng 2 vế vào với nhau...-> đpcm
Xét khai triển:
\(\left(1+2x\right)^{2n+1}=C_{2n+1}^0+C_{2n+1}^1.2x+C_{2n+1}^2\left(2x\right)^2+...+C_{2n+1}^{2n+1}\left(2x\right)^{2n+1}\)
Đạo hàm 2 vế:
\(2\left(2n+1\right)\left(1+2x\right)^{2n}=2C_{2n+1}^1+2^2C_{2n+1}^2x+...+\left(2n+1\right)2^{2n+1}C_{2n+1}^{2n+1}x^{2n}\)
\(\Leftrightarrow\left(2n+1\right)\left(1+2x\right)^{2n}=C_{2n+1}^1+2C_{2n+1}^2x+...+\left(2n+1\right)2^{2n}C_{2n+1}^{2n+1}x^{2n}\)
Cho \(x=-1\) ta được:
\(2n+1=C_{2n+1}^1-2C_{2n+1}^2+...+\left(2n+1\right)2^{2n}C_{2n+1}^{2n+1}\)
\(\Rightarrow2n+1=2019\Rightarrow n=1009\)
Điều kiện là n\(\ge\)5, n\(\in\)Z
Ta có
\(\Leftrightarrow\) \(C_{n+1}^5\) = 3\(C_{n+1}^6\) (áp dụng công thức \(C_{n+1}^k\) = \(C_n^k\) + \(C_n^{k-1}\))
\(\Leftrightarrow\) \(\frac{\left(n+1\right)!}{\left(n-4\right)!5!}\) = 3\(\frac{\left(n+1\right)!}{\left(n-5\right)!6!}\)
\(\Leftrightarrow\) \(\frac{1}{\left(n-4\right)!5!}\) = \(\frac{3}{\left(n-5\right)!6!}\)
\(\Leftrightarrow\) \(\frac{1}{n-4}\) = \(\frac{3}{6}\)
\(\Leftrightarrow\) 3n - 12 = 6
\(\Leftrightarrow\) n = 6
Rõ ràng n = 6 thỏa mãn điều kiện n\(\ge\) 5, n \(\in\) Z. Vậy nghiệm duy nhất của chương trình đã cho là n = 6.
Xét khai triển
\(\left(x+1\right)^{2n+1}=C_{2n+1}^0+C_{2n+1}^1x+...+C_{2n+1}^{2n}x^{2n}+C_{2n+1}^{2n+1}x^{2n+1}\)
Cho \(x=1\) ta được:
\(2^{2n+1}=C^0_{2n+1}+C_{2n+1}^1+...+C_{2n+1}^{2n}+C_{2n+1}^{2n+1}\)
\(\Leftrightarrow2^{2n+1}=2+C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^{2n}\)
\(\Leftrightarrow2^{2n+1}-2=C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^{2n}\)
\(\Leftrightarrow2^{10}-1=2^{2n+1}-2\Rightarrow2^{2n+1}=2^{10}+1\)
Không tồn tại n thỏa mãn yêu cầu bài toán (bạn xem lại đề bài)
Giả sử có 1 nhóm người gồm 2n người, trong đó có n nam và n nữ.
Chọn n người từ 2n người đó, ta thực hiện theo 2 cách:
- Cách 1: chọn bất kì, có \(C_{2n}^n\) cách (1)
- Cách 2: giả sử trong n người được chọn có k nữ và \(n-k\) nam
Chọn k nữ từ n nữ, có \(C_n^k\) cách
Chọn \(n-k\) nam từ n nam, có \(C_n^{n-k}\) cách
Số cách thỏa mãn: \(\sum\limits^n_{k=0}C_n^kC_n^{n-k}=\sum\limits^n_{k=0}C_n^kC_n^k=\sum\limits^n_{k=0}\left(C_n^k\right)^2\) (2)
(1); (2) \(\Rightarrow\sum\limits^n_{k=0}\left(C_n^k\right)^2=C_{2n}^n\)
Giải:
Điều kiện là n\(\ge\)2, n\(\in\)Z
Ta có
(1) \(\Leftrightarrow\)\(\frac{\left(n+2\right)!}{\left(n-1\right)!3!}\)+\(\frac{\left(n+2\right)!}{n!2!}\)>\(\frac{5}{2}\)\(\frac{n!}{\left(n-2\right)!}\)
\(\Leftrightarrow\)\(\frac{n\left(n+1\right)\left(n+2\right)}{6}\)+\(\frac{\left(n+1\right)\left(n+2\right)}{2}\)>\(\frac{5\left(n-1\right)n}{2}\)
\(\Leftrightarrow\)n(n2+3n+2) + 3(n2+3n+2) > 15(n2-n)
\(\Leftrightarrow\)n3-9n2+26n+6>0
\(\Leftrightarrow\)n(n2-9n+26)+6>0 (1)
Xét tam thứ bậc hai n2-9n+26, ta thấy \(\Delta\)=81-104<0
Vậy n2-9n+26>0 với mọi n. Từ đó suy ra với mọi n\(\ge\)2 thì (1) luôn luôn đúng. Tóm lại mọi số nguyên n\(\ge\)2 đều là nghiệm của (1).