Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 + 2 + 23 + ... + 29
=> 2S = 2 + 22 + 23 + ... + 210
=> 2S - S = S = 2 + 22 + 23 + ... + 210 - (1 + 2 + 23 + ... + 29)
=> S = 2 + 22 + 23 + ... + 210 - 1 - 2 - 23 - ... - 29
=> S = 210 - 1
lại có 5.28 = (4 + 1).28 = 4.28 + 28 = 22 . 28 + 28 = 210 + 28 mà S = 210 - 1
=> 5.28 > S
Ta có a chia cho 17 dư 11
=>a - 11 = 17.k
=> a = 17k + 11=>a + 74 = 17k +85, chia hết cho 17 ( vì 17k+85=17(k+5)) (1)
Ta có a chia cho 23 dư 18
=>a - 18 = 23.n
=>a = 23n + 18=>a + 74 = 23n +92, chia hết cho 23( vì 23n+92=23(m+4)) (2)
Ta lại có a chia cho 11 dư 3
=>a - 3 = 11.m
=>a = 11m + 3 =>a + 74 = 11m +77, chia hết cho 11 ( vì 11m+77=11(m+77)) (3)
Từ (1),(2) và (3) => a + 7 thuộc BC(17,23,11)
BCNN(17,23,11)=17.23.11=4301
=> a+7 thuộc B(4301)
=> a + 7 = 4301q ( q thuộc N*)
=> a + 7 - 4301 = 4301q - 4301
=> a - 4227= 4301(q-1)
=> a= 4301(q-1) + 4227
Vậy a chia cho 4301 dư 4227
y cho sửa dòng thứ 10 là Từ (1), (2) và (3)=> x+74 thuộc BC(17;23;11) vậy thui
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
\(S=\frac{1}{21}+\frac{1}{22}+...+\frac{1}{150}\)
\(=\left(\frac{1}{21}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+...+\frac{1}{80}\right)+\left(\frac{1}{81}+...+\frac{1}{150}\right)\)
\(>\left(\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{80}+...+\frac{1}{80}\right)+\left(\frac{1}{150}+...+\frac{1}{150}\right)\)
\(=\frac{20}{40}+\frac{40}{80}+\frac{70}{150}\)
\(=\frac{1}{2}+\frac{1}{2}+\frac{7}{15}>\frac{5}{4}\)
Mỗi phân số \(\frac{1}{11},\frac{1}{12},\frac{1}{13},...,\frac{1}{19}\)đều lớn hơn \(\frac{1}{20}\)
Do đó,\(S>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}(\)10 dãy \()\)
\(\Rightarrow S>\frac{10}{20}=\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\)
\(\frac{1}{11}>\frac{1}{20}\)
\(\frac{1}{12}>\frac{1}{20}\)
\(⋮\)
\(\frac{1}{20}=\frac{1}{20}\)
Suy ra \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)(có 10 số \(\frac{1}{20}\))
anh giúp cho
Ừ,anh giúp đi