K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2023

\(3S=241+81+27+9+...+\dfrac{1}{9}+\dfrac{1}{27}\)

\(2S=3S-S=241-\dfrac{1}{81}=\dfrac{241x81-1}{81}\)

\(\Rightarrow S=\dfrac{241x81-1}{2x81}\)

19 tháng 4 2018

a) Cho:  \(A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)

\(\Rightarrow3A=3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\)

\(\Rightarrow3A-A=3-\frac{1}{81}\)

\(\Rightarrow A=\frac{3-\frac{1}{81}}{2}\)

\(A=\frac{121}{81}\)

b) \(37,52+4,7\times2,3-9,8\)

\(=37,52+10,81-9,8\)

\(=38,53\)

Chúc bn học tốt !!!!!

8 tháng 7 2016

có cần phải giải ra ko

\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(=\frac{81}{243}+\frac{27}{243}+\frac{9}{243}+\frac{3}{243}+\frac{1}{243}\)

\(=\frac{121}{243}\)

mk ko bít đúng hay ko nữa có gì mấy bạn góp ý cho mình nhé ! Thanks

10 tháng 9 2017

\(G=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(G=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)

\(3G=3+1+\frac{1}{3}+...+\frac{1}{3^4}\)

\(3G-G=\left(3+1+...+\frac{1}{3^4}\right)-\left(1+\frac{1}{3}+...+\frac{1}{3^5}\right)\)

\(2G=3-\frac{1}{3^5}\)

\(2G=3-\frac{1}{243}\)

\(2G=\frac{729}{243}-\frac{1}{243}\)

\(G=\frac{728}{243}:2\)

\(G=\frac{364}{243}\)

\(\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{x.\left(x+1\right)}=\frac{6042}{2015}\)

\(3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{6042}{2015}\)

\(1-\frac{1}{x+1}=\frac{6042}{2015}:3\)

\(1-\frac{1}{x-1}=\frac{2014}{2015}\)

\(\frac{1}{x-1}=1-\frac{2014}{2015}\)

\(\frac{1}{x-1}=\frac{1}{2015}\)

\(\Rightarrow x-1=2015\)

\(\Rightarrow x=2016\)

26 tháng 3 2019

Đặt \(D=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}\)

\(\Leftrightarrow D=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}+\frac{1}{3^7}\)

\(\Leftrightarrow3D=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\)

\(\Leftrightarrow3D-D=2D=1-\frac{1}{3^6}\)

\(\Leftrightarrow D=\left(1-\frac{1}{3^6}\right)\div2\)

28 tháng 3 2019

Vậy kết quả của bạn là gì , zZz NCTK zZz ?

29 tháng 6 2017

 Đặt   \(A=\frac{1}{3}+\frac{1}{9}+.......+\frac{1}{59049}\)

  \(3A=3.\left(\frac{1}{3}+\frac{1}{9}+......+\frac{1}{59049}\right)\)

\(3A=1+\frac{1}{3}+........+\frac{1}{19683}\)

\(3A-A=\left(1+\frac{1}{3}+......+\frac{1}{19683}\right)-\left(\frac{1}{3}+\frac{1}{9}+........+\frac{1}{59049}\right)\)

\(2A=1-\frac{1}{59049}\)

\(2A=\frac{59048}{59049}\)

\(A=\frac{59048}{59049}:2\)

\(A=\frac{59048}{118098}\)

5 tháng 8 2016

\(\text{Đặt : }A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(\Rightarrow3A-A=1-\frac{1}{729}\)

\(\Rightarrow2A=\frac{728}{729}\)

\(\Rightarrow A=\frac{728}{729}:2=\frac{364}{729}\)

5 tháng 8 2016

\(=\frac{364}{729}\)

22 tháng 6 2017

dễ mk nhìn là biết

22 tháng 6 2017

Đặt A = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

3A = \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

3A - A = (\(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)) - (\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\))

2A = 1 - \(\frac{1}{729}\) = \(\frac{728}{729}\)

A = \(\frac{728}{729}:2=\frac{364}{729}\)