K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2017

tham khao nha

\(A=\left(\frac{\sqrt{a}}{\sqrt{ab}-b}+\frac{2\sqrt{a}+\sqrt{b}}{\sqrt{ab}-a}\right):\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)\)

\(A=\left(\frac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}+\frac{2\sqrt{a}+\sqrt{b}}{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}\right):\left(\frac{\sqrt{b}+\sqrt{a}}{\sqrt{ab}}\right)\)

\(A=\left(\frac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{2\sqrt{a}+\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}\right).\frac{\sqrt{ab}}{\sqrt{b}+\sqrt{a}}\)

\(A=\frac{a-2\sqrt{ab}+b}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}.\frac{\sqrt{ab}}{\sqrt{b}+\sqrt{a}}\)

\(A=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}.\frac{\sqrt{ab}}{\sqrt{b}+\sqrt{a}}\)

\(A=\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

vay \(A=\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

ĐK : tự ghi nha

\(\left(\frac{\sqrt{a}}{\sqrt{ab}-b}+\frac{2\sqrt{a}+\sqrt{b}}{\sqrt{ab}-a}\right):\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)\)

3 tháng 10 2017

a) Q=\(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)=\(\frac{\sqrt{a}-2}{3\sqrt{a}}\)  b) Ta thấy \(3\sqrt{a}>0\), để Q dương thì \(\sqrt{a}-2>0\Rightarrow a>4\)

1 tháng 8 2017

ĐK  \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)

Ta có \(P=\frac{\sqrt{a}\left(1-a\right)^2}{1+a}:\left[\left(\frac{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}+\sqrt{a}\right).\left(\frac{\left(1+\sqrt{a}\right)\left(a-\sqrt{a}+1\right)}{1+\sqrt{a}}-\sqrt{a}\right)\right]\)

\(=\frac{\sqrt{a}\left(1-a\right)^2}{1+a}:\left[\left(a+2\sqrt{a}+1\right).\left(a-2\sqrt{a}+1\right)\right]\)

\(=\frac{\sqrt{a}\left(1-a\right)^2}{1+a}.\frac{1}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)^2}=\frac{\sqrt{a}}{1+a}\)