\(\left(\dfrac{x-\sqrt{x}+2}{x-\sqrt{x}-2}-\dfrac{x}{x-2\sqrt{x}}\right)\div\df...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2021

a) ĐKXĐ có thêm \(x\ne4\)

 \(A=\left(\dfrac{x-\sqrt{x}+2}{x-\sqrt{x}-2}-\dfrac{x}{x-2\sqrt{x}}\right):\dfrac{1-\sqrt{x}}{2-\sqrt{x}}\)

\(=\left(\dfrac{x-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{x}{\sqrt{x}\left(\sqrt{x}-2\right)}\right).\dfrac{2-\sqrt{x}}{1-\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(x-\sqrt{x}+2\right)-x\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}.\dfrac{2-\sqrt{x}}{1-\sqrt{x}}\)

\(=\dfrac{-2x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}.\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)

\(=\dfrac{-2\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}.\dfrac{\sqrt{x}-2}{\sqrt{x}-1}=\dfrac{-2}{\sqrt{x}+1}\)

 \(B=\left(\dfrac{x}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

\(=\dfrac{x+1}{\sqrt{x}+3}:\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{x+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x+1}{\sqrt{x}+3}:\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}=\dfrac{x+1}{\sqrt{x}+3}.\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+1}{\sqrt{x}+1}\)

Bài 2:

a: \(A=\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{4}-\dfrac{3\sqrt{5}\left(3-\sqrt{5}\right)}{4}\)

\(=-5+3\sqrt{5}+\dfrac{5+\sqrt{5}-9\sqrt{5}+15}{4}\)

\(=-5+3\sqrt{5}+5-2\sqrt{5}=\sqrt{5}\)

b: \(B=\left(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+3\sqrt{x}+6-2\sqrt{x}-6}=1\)

a: \(A=\dfrac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}-\dfrac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)

\(=-\sqrt{x}+3-\sqrt{x}+3-6=-2\sqrt{x}\)

b: \(\left(\dfrac{2\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right):\left(\dfrac{2\sqrt{x}}{\sqrt{x}+1}-1\right)\)

\(=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x+1\right)}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{2\sqrt{x}-\sqrt{x}-1}{\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}-x-1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{1}{x+1}\)

g: \(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\left(\dfrac{x-1}{\sqrt{x}+1}-2\right)\)

\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{x-1}\cdot\left(\sqrt{x}-1-2\right)\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-1}\)

 

Bài 1:

a: ĐKXĐ: 2x+3>=0 và x-3>0

=>x>3

b: ĐKXĐ:(2x+3)/(x-3)>=0

=>x>3 hoặc x<-3/2

c: ĐKXĐ: x+2<0

hay x<-2

d: ĐKXĐ: -x>=0 và x+3<>0

=>x<=0 và x<>-3

18 tháng 8 2018

a) ta có : \(A=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\left(\dfrac{1}{2\sqrt{x}}-\dfrac{\sqrt{x}}{2}\right)^2\)

\(\Leftrightarrow A=\left(\dfrac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\left(\dfrac{1-x}{2\sqrt{x}}\right)^2\)

\(\Leftrightarrow A=\left(\dfrac{-4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\dfrac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{4x}\)

\(\Leftrightarrow A=\dfrac{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\)

b) ta có : \(\dfrac{A}{\sqrt{x}}=\dfrac{-\left(x-1\right)}{x}>3\Leftrightarrow\dfrac{-x+1}{x}>3\)

\(\Leftrightarrow-1+\dfrac{1}{x}>3\Leftrightarrow\dfrac{1}{x}>4\Leftrightarrow x< \dfrac{1}{4}\) vậy \(x< \dfrac{1}{4}\)

Bài 1:

a: \(A=\left(\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+8\sqrt{x}}{9x-1}\right):\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)

\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1+5\sqrt{x}+1}{9x-1}:\dfrac{3}{3\sqrt{x}+1}\)

\(=\dfrac{3x+3\sqrt{x}}{9x-1}\cdot\dfrac{3\sqrt{x}+1}{3}=\dfrac{x+\sqrt{x}}{3\sqrt{x}-1}\)

b: \(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{1}\cdot\dfrac{\sqrt{x}-1}{2}\)

\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)

16 tháng 8 2018

Mình làm mấy bài rút gọn thôi nhé :v (mấy cái kia mình làm sợ không đúng)

\(P=\dfrac{\sqrt{x}+1}{x-1}-\dfrac{x+2}{x\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\\ =\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\\ =\dfrac{1}{\sqrt{x}-1}-\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

\(=\dfrac{x+\sqrt{x}+1-\left(x+2\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{x+\sqrt{x}+1-x-2-\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}+1-2-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}+0-x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}\left[-\left(\sqrt{x}-1\right)\right]}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}\left(-1\right)}{x+\sqrt{x}+1}\\ =-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)

16 tháng 8 2018

Bài 3:

\(P=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{\left(2x+\sqrt{x}\right)\sqrt{x}}{x}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}+2\left(\sqrt{x}+1\right)\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x\left(2\sqrt{x}+1\right)}{x}+2\sqrt{x}+2\)

\(=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\sqrt{x}+2\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+2\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}+1\\ =\dfrac{x-\sqrt{x}+x+\sqrt{x}+1}{x+\sqrt{x}+1}\\ =\dfrac{2x+1}{x+\sqrt{x}+1}\)

7 tháng 6 2017

a) \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}\)

\(=\dfrac{4a^2b^3}{8\sqrt{2}a^3b^3}\)

\(=\dfrac{1}{2\sqrt{2}a}\)

\(=\dfrac{\sqrt{2}}{4a}\)

b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)

chịu đấy :v

c) \(\sqrt{\dfrac{\left(x-2\right)^2}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{x-2}{3-x}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{x-2}{-\left(x-3\right)}+\dfrac{x^2-1}{x-3}\)

\(=-\dfrac{x-2}{x-3}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{-\left(x-2\right)+x^2-1}{x-3}\)

\(=\dfrac{-x+1+x^2}{x-3}\)

d) \(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1^2\right)}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(x-1\right)^2}\)

\(=\dfrac{1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{x-1}\)

\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(\sqrt{y}-1\right)\left(x-1\right)}\)

\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{x\sqrt{y}-\sqrt{y}-x+1}\)

e) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)

\(=4x-2\sqrt{2}+\dfrac{\sqrt{x^2\cdot\left(x+2\right)}}{\sqrt{x+2}}\)

\(=4x-2\sqrt{2}+\sqrt{x^2}\)

\(=4x-2\sqrt{x}+x\)

\(=5x-2\sqrt{2}\)

8 tháng 6 2017

bạn ơi phần c mình sai đề bài.. bạn giúp mk giải lại đc k \(\sqrt{\dfrac{\left(x-2\right)^4}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\)

30 tháng 8 2017

a)

\(\dfrac{\left(\sqrt{x^2+4}-2\right)\left(\sqrt{x^2+4}-2\right)\left(x+\sqrt{x}+1\right)\sqrt{x-2\sqrt{x}+1}}{x\left(x\sqrt{x}-1\right)}\\=\dfrac{\left(\left(\sqrt{x^2+4}\right)^2-4\right)\left(\left(x+\sqrt{x}+1\right)\sqrt{\left(x-1\right)^2}\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{\left(x^2+4-4\right)\left(\left(x+\sqrt{x}+1\right)\left(x-1\right)\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{x^2\left(x^3-1\right)}{x\left(x\sqrt{x}-1\right)}=x^2\sqrt{x}\)

b)

\(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right)\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\right)\left(\dfrac{a}{\sqrt{a}}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{a-4\sqrt{a}+4-a-4\sqrt{a}-4}{a-4}\right)\left(\dfrac{a-4}{\sqrt{a}}\right)\\ =\dfrac{-8\sqrt{a}}{a-4}\cdot\dfrac{a-4}{\sqrt{a}}=-8\)

c)

\(\left(\dfrac{\left(\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)}+\dfrac{\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)}\right)\left(1-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}+\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}}{\sqrt{a}}-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{a-2\sqrt{a}+1+a+2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right)\\ =\dfrac{2a+2}{a-1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(a+1\right)}{a+1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(\sqrt{a}-1\right)}{\sqrt{a}}\)

d)

\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}^3-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}^3+1\right)}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\\ =\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)+x+1\\ =x-\sqrt{x}-x-\sqrt{x}+x+1\\ =x-2\sqrt{x}+1\\ =\left(x-1\right)^2\)

a: \(A=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}\cdot\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+2\sqrt{x}+2\)

\(=\sqrt{x}\left(\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)+2\sqrt{x}+2\)

\(=\left(x-\sqrt{x}\right)\left(2\sqrt{x}+1\right)+2\sqrt{x}+2\)

\(=2x\sqrt{x}+x-2x-\sqrt{x}+2\sqrt{x}+2\)

\(=2x\sqrt{x}-x+\sqrt{x}+2\)

b: \(=\dfrac{\sqrt{x}-4+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{x-4-x}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{4\left(\sqrt{x}-1\right)}{-4}=-\sqrt{x}+1\)

c: \(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-3x+8\sqrt{x}+5-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}+8}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)