Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=1-5+5^{^2}-5^{^3}+...-5^{^{99}}+5^{^{100}}\)
\(5B=5-5^{^2}+5^{^3}-5^{^4}+...-5^{^{100}}+5^{^{101}}\)
\(5B+B=\left(5-5^{^2}+5^{^3}-5^{^4}+...-5^{^{100}}+5^{^{101}}\right)+\left(1-5+5^{^2}-5^{^3}+...-5^{^{99}}+5^{^{100}}\right)\)
\(6B=5^{^{101}}+1\)
\(B=\dfrac{5^{^{101}}+1}{6}\)
\(a,\left|x+2\right|=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
\(b,\left|x-5\right|=\left|-7\right|\)
\(\Leftrightarrow\left|x-5\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=7\\x-5=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-2\end{matrix}\right.\)
\(c,\left(7-x\right)-\left(25+7\right)=-25\)
\(\Leftrightarrow7-x-32=-25\)
\(\Leftrightarrow x=0\)
\(d,\left|x-3\right|=\left|5\right|+\left|-7\right|\)
\(\Leftrightarrow\left|x-3\right|=12\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=12\\x-3=-12\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=15\\x=-9\end{matrix}\right.\)
a, -1+3 - 5 + 7 - ...... +97 - 99
[ - 1+ 3] - [ 5 + 7] - .... - [ 95 + 97] - 99
[2 - 12] - ..... - [184 - 192] - 99
còn lại tự giải
a,M=2^0-2^1+2^2-2^3+2^4-2^5+.....+2^2012
2M=2^1-2^2+2^3-2^4+2^5-2^5+......-2^2012+2^2013
3M=2^0+2^2013
M=(2^0+2^2013)÷3
Vậy.......
b,N=3-3^2+3^3-3^4+3^5-3^6+.....+3^2011-3^2012
3N=3^2-3^3+3^4-3^5+3^6-3^7+......+3^2012-3^2013
4N=3-3^2013
N=(3-3^2013)÷4
Vậy........
K tao nhé ko lên lớp tao đánh m😈😈😈
a, 1+[-2]+3+[-4]+....+19+[-20]
= [1+(-2)]+[3+(-4)]+...+[19+(-20)]
=-1+(-1)+...+(-1) (có 10 số -1 )
=-1.10
=-10
b,1-2+3-4+...+99-100
=(1-2)+(3-4)+...+(99-100)
=-1+(-1)+...+(-1) (có 50 số -1)
=-1.50
=-50
c, 2-4+6-8+...+48-50
=(2-4)+(6-8)+...+(48-50)
=-2+(-2)+...+(-2) (có 12,5 số -2)
=-2.12,5
=-25
a)1-2+3-4+....+99-100
= (1-2)+(3-4)+....+(99-100) 50 cặp
=(-1)+(-1)+... +(-1)50 số
=(-50)
b)1+(-2)+3+(-4)+.....19+(-20)
=[1+(-2)]+[3+(-4)]+....+[19+(-20)] 10 cặp
=(-1)+(-1)+....+(-1) 10 số
=-10
A*3=(1+3+32+33+34+...+399+3100)
3A=3+32+33+34+35+...+3100+3101
3A-A=(3+32+33+34+35+...+3100+3101)-(1+3+32+33+34+...+399+3100)
2A=3101-1
A=(3101-1):2
A = 1 + 3 + 32 + ... + 399 + 3100
3A = 3 + 32 + 33 + ... + 399 + 3100
3A - A = ( 3 + 32 + 33 + ... + 399 + 3100 ) - ( 1 + 3 + 32 + ... + 399 + 3100 )
2A = 3100 - 1
A = \(\frac{3^{100}-1}{2}\)