K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2021
a) √ − 9 a − √ 9 + 12 a + 4 a 2 = √ − 9 a − √ 3 2 + 2.3 .2 a + ( 2 a ) 2 = √ 3 2 ⋅ ( − a ) − √ ( 3 + 2 a ) 2 = 3 √ − a − | 3 + 2 a | Thay a = − 9 ta được: 3 √ 9 − | 3 + 2 ⋅ ( − 9 ) | = 3.3 − 15 = − 6 . b) Điều kiện: m ≠ 2 1 + 3 m m − 2 √ m 2 − 4 m + 4 = 1 + 3 m m − 2 √ m 2 − 2.2 ⋅ m + 2 2 = 1 + 3 m m − 2 √ ( m − 2 ) 2 = 1 + 3 m | m − 2 | m − 2 +) m > 2 , ta được: 1 + 3 m m − 2 √ m 2 − 4 m + 4 = 1 + 3 m . ( 1 ) +) m < 2 , ta được: 1 + 3 m m − 2 √ m 2 − 4 m + 4 = 1 − 3 m . ( 2 ) Với m = 1 , 5 < 2 . Thay vào biểu thức ( 2 ) ta có: 1 − 3 m = 1 − 3.1 , 5 = − 3 , 5 Vậy giá trị biểu thức tại m = 1 , 5 là − 3 , 5 . c) √ 1 − 10 a + 25 a 2 − 4 a = √ 1 − 2.1 .5 a + ( 5 a ) 2 − 4 a = √ ( 1 − 5 a ) 2 − 4 a = | 1 − 5 a | − 4 a +) Với a < 1 5 , ta được: 1 − 5 a − 4 a = 1 − 9 a . ( 3 ) +) Với a ≥ 1 5 , ta được: 5 a − 1 − 4 a = a − 1 . ( 4 ) Vì a = √ 2 > 1 5 . Thay vào biểu thức ( 4 ) ta có: a − 1 = √ 2 − 1 . Vậy giá trị của biểu thức tại a = √ 2 là √ 2 − 1 . d) 4 x − √ 9 x 2 + 6 x + 1 = 4 x − √ ( 3 x ) 2 + 2.3 x + 1 = 4 x − √ ( 3 x + 1 ) 2 = 4 x − | 3 x + 1 | +) Với 3 x + 1 ≥ 0 ⇔ x ≥ − 1 3 , ta có: 4 x − ( 3 x + 1 ) = 4 x − 3 x − 1 = x − 1 . ( 5 ) +) Với 3 x + 1 < 0 ⇔ x < − 1 3 , ta có: 4 x + ( 3 x + 1 ) = 4 x + 3 x + 1 = 7 x + 1 . ( 6 ) Vì x = − √ 3 < − 1 3 . Thay vào biểu thức ( 6 ) , ta có: 7 x + 1 = 7 . ( − √ 3 ) + 1 = − 7 √ 3 + 1 . Giá trị của biểu thức tại x = − √ 3 là − 7 √ 3 + 1
19 tháng 5 2021

a) \sqrt{-9a}-\sqrt{9+12 a+4 a^{2}}

=\sqrt{-9 a}-\sqrt{3^{2}+2.3 .2 a+(2 a)^{2}}

=\sqrt{3^{2} \cdot(-a)}-\sqrt{(3+2 a)^{2}}

=3 \sqrt{-a}-|3+2 a|

Thay a=-9 ta được:

3 \sqrt{9}-|3+2 \cdot(-9)|=3.3-15=-6.

b) Điều kiện: m \neq 2

1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}

=1+\dfrac{3 m}{m-2} \sqrt{m^{2}-2.2 \cdot m+2^{2}}

=1+\dfrac{3 m}{m-2} \sqrt{(m-2)^{2}}

=1+\dfrac{3 m|m-2|}{m-2}

+) m>2, ta được: 1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}=1+3 m(1)

+) m<2, ta được: 1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}=1-3 m(2)

Với m=1,5<2. Thay vào biểu thức (2) ta có: 1-3 m=1-3.1,5=-3,5

Vậy giá trị biểu thức tại m=1,5 là -3,5.

c) \sqrt{1-10 a+25 a^{2}}-4a

=\sqrt{1-2.1 .5 a+(5 a)^{2}}-4 a

=\sqrt{(1-5a)^{2}}-4 a

=|1-5 a|-4 a

+) Với a <\dfrac{1}{5}, ta được: 1-5a-4 a=1-9a(3)

+) Với a \ge \dfrac{1}{5}, ta được: 5 a-1-4 a=a-1(4)

Vì a=\sqrt{2}>\dfrac{1}{5}. Thay vào biểu thức (4) ta có: a-1=\sqrt{2}-1.

Vậy giá trị của biểu thức tại a=\sqrt{2} là \sqrt{2}-1.

d) 4 x-\sqrt{9 x^{2}+6 x+1}

=4 x-\sqrt{(3 x)^{2}+2.3 x+1}=4 x-\sqrt{(3 x+1)^{2}}

=4 x-|3x+1|

+) Với 3x+1 \geq 0 \Leftrightarrow x \ge -\dfrac{1}{3}, ta có: 4 x-(3x+1)=4 x-3 x-1 =x-1(5)

+) Với 3x+1<0 \Leftrightarrow x <-\dfrac{1}{3}, ta có: 4 x+(3 x+1)=4 x+3x+1=7x+1(6)

Vì x=-\sqrt{3}<-\dfrac{1}{3}. Thay vào biểu thức (6), ta có: 7 x+1=7 .(-\sqrt{3})+1=-7 \sqrt{3}+1.

Giá trị của biểu thức tại x=-\sqrt{3} là -7 \sqrt{3}+1.

25 tháng 10 2023

a: \(M=\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

b: Khi \(x=3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\) thì

\(M=\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}-2}{\sqrt{\left(\sqrt{2}+1\right)^2}}=\dfrac{\sqrt{2}+1-2}{\sqrt{2}+1}\)

\(=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}=\left(\sqrt{2}-1\right)^2=3-2\sqrt{2}\)

c: M>0

=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}}>0\)

mà \(\sqrt{x}>0\)

nên \(\sqrt{x}-2>0\)

=>\(\sqrt{x}>2\)

=>x>4

8 tháng 3 2018

Tìm được A =  24 5 và B =  - 6 x - 4  với x > 0 và x ≠ 4 ta tìm được 0 < x < 1

Ta có M =  - 1 + 2 x ∈ Z =>  x ∈ Ư(2) từ đó tìm được x=1

a: \(P=\left(\dfrac{1}{m\left(m-1\right)}+\dfrac{1}{m-1}\right)\cdot\dfrac{\left(m-1\right)^2}{m+1}\)

\(=\dfrac{m+1}{m\left(m-1\right)}\cdot\dfrac{\left(m-1\right)^2}{m+1}=\dfrac{m-1}{m}\)

b: Khi m=1/2 thì \(P=\left(\dfrac{1}{2}-1\right):\dfrac{1}{2}=\dfrac{-1}{2}\cdot2=-1\)

1: \(1+\sqrt{\dfrac{\left(x-1\right)^2}{x-1}}=1+\sqrt{x-1}\)

2: \(A=\sqrt{\left(x-2\right)^2}+\dfrac{x-2}{\sqrt{\left(x-2\right)^2}}\)

=\(\left|x-2\right|+\dfrac{x-2}{\left|x-2\right|}\)

TH1: x>2

A=x-2+(x-2)/(x-2)=x-2+1=x-1

TH2: x<2

A=2-x+(x-2)/(2-x)=2-x-1=1-x

3: \(C=\sqrt{m}-\sqrt{m-2\sqrt{m}+1}\)

\(=\sqrt{m}-\sqrt{\left(\sqrt{m}-1\right)^2}\)

\(=\sqrt{m}-\left|\sqrt{m}-1\right|\)

TH1: m>=1

\(C=\sqrt{m}-\sqrt{m}+1=1\)

TH2: 0<=m<1

\(C=\sqrt{m}+\sqrt{m}-1=2\sqrt{m}-1\)

b: A=x+|x-2|

TH1: x>=2

A=x+x-2=2x-2

TH2: x<2

A=x+2-x=2

c: B=|x-3|-x

TH1: x>=3

B=x-3-x=-3

TH2: x<3

B=3-x-x=3-2x