Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)-3abc}{a^2+b^2+c^2-ab-bc-ac}\)
\(=\dfrac{\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-bc-ac}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)}{a^2+b^2+c^2-ab-bc-ac}\)
=a+b+c
b:
Sửa đề: \(=\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{\left(x-y\right)^3+z^3+3xy\left(x-y\right)+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{\left(x-y+z\right)\left(x^2-2xy+y^2-xz+yz+z^2\right)+3xy\left(x-y+z\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)
\(=\dfrac{\left(x-y+z\right)\left(x^2+y^2+z^2+xy-xz+yz\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)
\(=\dfrac{x-y+z}{2}\)
a) \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}\)
\(=a+b+c\)
\(B=\left(ab+bc+ca\right)\left(\dfrac{ab+bc+ca}{abc}\right)-abc\left(\dfrac{a^2b^2+b^2c^2+c^2a^2}{a^2b^2c^2}\right)\)
\(=\dfrac{\left(ab+bc+ca\right)^2-\left(a^2b^2+b^2c^2+c^2a^2\right)}{abc}\)
\(=\dfrac{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)-\left(a^2b^2+b^2c^2+c^2a^2\right)}{abc}\)
\(=2\left(a+b+c\right)\)
a) \(\dfrac{3x^2y}{2xy^5}=\dfrac{3x}{2y^4}\)
b) \(\dfrac{3x^2-3x}{x-1}=\dfrac{3x\left(x-1\right)}{x-1}=3x\)
c) \(\dfrac{ab^2-a^2b}{2a^2+a}=\dfrac{ab\left(b-a\right)}{a\left(2a+1\right)}=\dfrac{b\left(b-a\right)}{2a+1}=\dfrac{b^2-ab}{2a+1}\)
d) \(\dfrac{12\left(x^4-1\right)}{18\left(x^2-1\right)}=\dfrac{2\left(x^2-1\right)\left(x^2+1\right)}{3\left(x^2-1\right)}=\dfrac{2\left(x^2+1\right)}{3}\)
`a, (3x^2y)/(2xy^5)`
`= (3x)/(2y^4)`
`b, (3x^2-3x)/(x-1)`
`= (3x(x-1))/(x-1)`
`= 3x`
`c, (ab^2-a^2b)/(2a^2+a)`
`= (b(a-b))/((2a+1))`
`d, (12(x^4-1))/(18(x^2-1)) = (2(x^2+1))/3`.
\(\dfrac{5a^2\left(a+b\right)^3}{10a\left(a+b\right)^2}=\dfrac{a\left(a+b\right)}{2}\)
\(\dfrac{5a^2\left(a+b\right)^3}{10a\left(a+b\right)^2}=\dfrac{a\left(a+b\right)}{2}\)
a) Đặt \(A=\frac{\left(a+b\right)^2-c^2}{a+b+c}=\frac{\left(a+b\right)^2}{a+b}-\frac{c^2}{c}=a+b-c\)
b)Đặt \(B=\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}=\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\frac{a+b-c}{a+c-b}\)
Auto giải thích thêm câu b) (để tránh bị các thành phần spammer bắt bẻ)
\(\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\frac{a+b-c}{a+c-b}\) vì:
\(\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\frac{\left[\left(a+b\right)-c\right]\left[\left(a+b\right)+c\right]}{\left[\left(a+c\right)-b\right]\left[\left(a+c\right)+b\right]}=\frac{a+b-c}{a+c-b}\)
Phân thức có nghĩa khi a;b;c không đồng thời bằng 0
Khi đó:
\(\dfrac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2+2ab+2bc+2ca\right)+\left(ab+bc+ca\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)
\(=\dfrac{\left(a^2+b^2+c^2\right)^2+2\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)+\left(ab+bc+ca\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)
\(=\dfrac{\left(a^2+b^2+c^2+ab+bc+ca\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)
\(=a^2+b^2+c^2+ab+bc+ca\)
\(=\dfrac{b\left(b-c\right)-a\left(a-c\right)}{ab\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\dfrac{b^2-bc-a^2+ac}{ab\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\dfrac{-\left(a-b\right)\left(a+b\right)+c\left(a-b\right)}{ab\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\dfrac{-a-b+c}{ab\left(a-c\right)\left(b-c\right)}\)
\(=\dfrac{1}{a\left(a-b\right)\left(a-c\right)}-\dfrac{1}{b\left(a-b\right)\left(b-c\right)}\)
\(=\dfrac{b^2-cb-a^2+ac}{ab\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\dfrac{\left(b-a\right)\left(b+a\right)-c\left(b-a\right)}{ab\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\dfrac{-\left(b+a-c\right)}{ab\left(a-c\right)\left(b-c\right)}\)
\(\dfrac{30x\left(x-3\right)^2}{14y\left(x-3\right)}=\dfrac{15x\left(x-3\right)}{7y}\)
\(=\dfrac{30x\left(x-3\right)}{14y}=\dfrac{15x\left(x-3\right)}{7y}\)