Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{2^{35}.45^{25}.13^{22}.35^{16}}{9^{26}.65^{22}.28^{17}.25^9}=\frac{2^{35}.\left(9.5\right)^{25}.13^{22}.\left(5.7\right)^{16}}{9^{26}.\left(5.13\right)^{22}.\left(7.4\right)^{17}.\left(5.5\right)^9}\)
\(=\frac{2^{35}.9^{25}.5^{25}.13^{22}.5^{16}.7^{16}}{9^{26}.13^{22}.5^{22}.7^{17}.4^{17}.5^9.5^9}\)
\(=\frac{2^{35}.5^3}{9.4^{17}.5^2.7}\)
\(=\frac{2^{35}.5}{9.4^{17}.7}\)
\(=\frac{2^{35}.5}{9.2^{34}.7}\)
\(=\frac{2.5}{9.7}\)
\(=\frac{10}{63}\)
p/s: - Ko chắc ~
\(\frac{2^{35}.9^{25}.5^{25}.13^{22}.7^{16}.5^{16}}{9^{26}.13^{22}5.^{22}.7^{17}.4^{17}.5^{2.9}}=2^{\left(35-2.17\right)}.9^{\left(25-26\right)}.5^{\left(25+16\right)-\left(22+2.9\right)}.13^{22-22}.7^{16-17}.\)
\(2^1.9^{-1}.5^1.13^0.7^{-1}=\frac{2.5}{9.7}=\frac{10}{63}\)
\(\frac{2^{23}\cdot45^{25}\cdot13^{22}\cdot35^{16}}{9^{26}\cdot65^{22}\cdot28^{17}\cdot25^9}=\frac{2^{23}\cdot5^{25}\cdot3^{50}\cdot13^{22}\cdot5^{16}\cdot7^{16}}{3^{52}\cdot5^{22}\cdot13^{22}\cdot7^{17}\cdot2^{54}\cdot5^{18}}=\frac{2^{23}\cdot3^{50}\cdot5^{31}\cdot7^{16}\cdot13^{22}}{2^{54}\cdot3^{52}\cdot5^{22}\cdot7^{17}\cdot13^{22}}=\frac{5^9}{2^{31}\cdot3^2\cdot7}\)
A=\(\frac{2^{35}.9^{25}.5^{25}.13^{22}.7^{16}.5^{16}}{4^{17}.7^{17}.9^{26}.13^{22}.5^{22}.5^9.5^9}=\frac{2^{35}.5^1}{4^{17}.7^1.9}=\frac{2^{35}.5}{2^{34}.7^1.9}\)= \(\frac{2.5}{7.9}=\frac{10}{63}\)
Ta có: \(\dfrac{x^{24}+x^{20}+x^{16}+...+x^4+1}{x^{26}+x^{24}+x^{22}+...+x^2+1}\)
\(=\dfrac{x^{24}+x^{20}+x^{16}+...+x^4+1}{\left(x^{26}+x^{22}+...+x^2\right)+\left(x^{24}+x^{20}+x^{16}+...+x^4+1\right)}\)
\(=\dfrac{x^{24}+x^{20}+x^{16}+...+x^4+1}{x^2\left(x^{24}+x^{20}+...+1\right)+\left(x^{24}+x^{20}+x^{16}+...+x^4+1\right)}\)
\(=\dfrac{x^{24}+x^{20}+x^{16}+...+x^4+1}{\left(x^{24}+x^{20}+x^{16}+...+1\right)\left(x^2+1\right)}\)
\(=\dfrac{1}{x^2+1}\)
x24+x20+x16+...+x4+1x26+x24+x22+...+x2+1x24+x20+x16+...+x4+1x26+x24+x22+...+x2+1
=x24+x20+x16+...+x4+1(x26+x22+...+x2)+(x24+x20+x16+...+x4+1)=x24+x20+x16+...+x4+1(x26+x22+...+x2)+(x24+x20+x16+...+x4+1)
=x24+x20+x16+...+x4+1x2(x24+x20+...+1)+(x24+x20+x16+...+x4+1)=x24+x20+x16+...+x4+1x2(x24+x20+...+1)+(x24+x20+x16+...+x4+1)
=x24+x20+x16+...+x4+1(x24+x20+x16+...+1)(x2+1)
1,
Đặt \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\left(2-1\right)A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(1A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(A=2^{32}-1\)
Vậy \(A=2^{32}-1\)
2, \(x^2-6x=-9\)
\(x^2-6x+9=0\)
\(\left(x-3\right)^2=0\)
\(x-3=0\)
\(x=3\)
Vậy \(x=3\)
Câu 1:
\(\dfrac{2^{35}.45^{25}.13^{22}.35^{16}}{9^{26}.65^{22}.28^{17}.25^9}\)
\(=\dfrac{2^{35}.9^{25}.5^{25}.13^{22}.7^{16}.5^{16}}{9^{26}.13^{22}.5^{22}.2^{17}.2^{17}.7^{17}.5^9.5^9}\)
Bạn rút gọn sẽ còn lại:
\(=\dfrac{2.5}{7.9}=\dfrac{10}{63}\)
Câu 4:
\(K=\left(x^2y-3\right)^2-\left(2x-y\right)^3+xy^2\left(6-x^3\right)+8x^3-6x^2y-y^3\)\(K=\left(x^2y\right)^2-2.x^2y.3+3^2-\left[\left(2x\right)^3-3.\left(2x\right)^2.y+3.2x.y^2-y^3\right]+6xy^3-x^4y^2+8x^3-6x^2y-y^3\)\(K=x^4y^2-6x^2y+9-8x^3+12x^2y-6xy^2+y^3+6xy^2-x^4y^2+8x^3-6x^2y-y^3\)\(K=9\)
\(A=\dfrac{2^{35}.45^{25}.13^{22}.35^{16}}{9^{26}.65^{22}.28^{17}.25^9}=\dfrac{2^{35}.3^{50}.5^{25}.13^{22}.5^{16}.7^{16}}{3^{52}.13^{22}.5^{22}.2^{34}.7^{17}.5^{18}}\)
\(=\dfrac{2.5^3}{3^2.5^2.7}=\dfrac{2.5}{3^2.7}=\dfrac{10}{63}\)