Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4) (3x-2)(x-3)= 3x(x-3)-2(x-3)
=3x.x+3x.(-3)-2.x-2.(-3)
=\(3x^2\)-9x-4x+6
=\(3x^2\)+(-9x-4x)+6
=\(3x^2\)-13x+6
5) (2x+1)(x+3)=2x(x+3)+1(x+3)
=2x.x+2x.3+1.x+1.3
=\(2x^2\)+6x+1x+3
=\(2x^2\)+(6x+1x)+3
=\(2x^2\)+7x+3
6) (x-3)(3x-1)=x(3x-1)-3(3x-1)
=x.3x+x.(-1)-3.3x-3.(-1)
=\(3x^2\)-1x-9x+3
=\(3x^2\)+(-1x-9x)+3
=\(3x^2\)-10x+3
rút gọn biểu thức
A) \(x^2\)-(x+4)(x-1)=\(x^2\)- x(x-1)-4(x-1)
=\(x^2\)-x.x-x.(-1)-4.x-4.(-1)
=\(x^2\)-\(x^2\)+1x-4x+4
=(\(x^2-x^2\))+(1x-4x)+4
= -3x+4
B) x(x+2)-(x-2)(x+4)=x.x+x.2-x(x+4)+2(x+4)
=\(x^2+2x\)-x.x-x.4+2.x+2.4
=\(x^2+2x-x^2-4x+2x+8\)
=(\(x^2-x^2\))+(2x-4x+2x)+8
=8
tính giá trị biểu thức
A=3(x-2)-(2+x)(x-3)
=3.x+3.(-2)-2(x-3)-x(x-3)
=3x-6-2.x-2.(-3)-x.x-x(-3)
=3x-6-2x+6-\(x^2\)+3x
=(3x-2x+3x)+(-6+6)\(-x^2\)
=4x - \(x^2\)
thay x=-8 vào biểu thức thu gọn ta được:
4.(-8)- (-8)\(^2\)
= - 32 +64
= 32
B= x(3-x)-(1+x)(1-x)
=x.3+x.(-x)-1(1-x)-x(1-x)
=3x -\(x^2\)-1.1-1 .(-x)-x.1-x.(-x)
=3x\(-x^2\)-\(1^2\)+1x-1x+\(x^2\)
=(3x+1x-1x)+(\(-x^2+x^2\))-1
=3x-1
thay x=-5 vào biểu thức thu gọn ta được:
3.(-5)-1
=-15-1
=-16
Thu gọn biểu thức
4) (3x - 2) (x - 3)
= ( 3x2 - 2x ) - ( 3x x 3 - 2 x 3 )
= 3x2 - 2x - 3x x 3 + 2 x 3
= 3x2 - 2x - 9x + 6
= 3x2 - 11x + 6
5) (2x + 1) (x + 3)
= ( 2x2 + 1x ) + ( 6x + 3 )
= 2x2 + 1x + 6x + 3
= 2x2 + 7x + 3
6) (x - 3) (3x - 1)
= ( 3x2 - 9x ) - ( x - 3 )
= 3x2 - 9x - x + 3
= 3x2 - 10 + 3
Rút gọn biểu thức
A) x^2 - (x + 4) (x - 1)
= x2 - ( x2 + 4x ) - ( x + 4 )
= x2 - x2 - 4x - x - 4
= -5x - 4
B) x (x + 2) - (x - 2) (x + 4)
= x2 + 2x - ( x2 - 2x ) + ( 4x - 8 )
= x2 + 2x - x2 + 2x + 4x - 8
= 8x - 8
Tính giá trị biểu thức
A = 3 (x - 2) - (2 + x) (x - 3) tại x = - 8
Thế x = -8 vào, ta có :
= 3 ( -8 -2 ) - ( 2 + -8 ) ( -8 - 3 )
= 3 x ( -10 ) - ( - 6 ) ( -11 )
= -30 - 66
= -96
B = x (3 - x) - (1 + x) ( 1 - x) tại x = - 5
Thế x = - 5 vào, ta có :
= -5 ( 3 - -5 ) - ( 1+ -5 ) ( 1 - -5 )
= -5 x 8 - (-4) x 6
= - 40 - -24
= -40 + 24
= -16
100% đúng
hok tốt nha
1) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(x^2+7x=t\)
\(\Rightarrow BT=\left(t+10\right)\left(t+12\right)-24\)
\(=t^2+22x+96=\left(t+11\right)^2-25\ge-25\)
Vậy GTNN của bt là - 25\(\Leftrightarrow x^2+7x+11=0\)
\(\Delta=7^2-4.11=5\)
\(\orbr{\begin{cases}x_1=\frac{-22+\sqrt{5}}{2}\\x_2=\frac{-22-\sqrt{5}}{2}\end{cases}}\)
2) \(\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)-20\)
\(=\left(x-1\right)\left(x-7\right)\left(x-3\right)\left(x-5\right)-20\)
\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)-20\)
Đặt \(x^2-8x=t\)
\(\RightarrowĐT=\left(t+7\right)\left(t+15\right)-20\)
\(=t^2+22t+85=\left(t+11\right)^2-36\ge-36\)
Vậy GTNN của bt là - 36\(\Leftrightarrow x^2-8x+11=0\)
\(\Delta=\left(-8\right)^2-4.11=20\)
\(\orbr{\begin{cases}x_1=\frac{-22-\sqrt{20}}{2}\\x_2=\frac{-22+\sqrt{20}}{2}\end{cases}}\)
a: Ta có: \(A=\left(x+2\right)\left(x-4\right)+\left(x+1\right)\left(x-6\right)\)
\(=x^2-4x+2x-8+x^2-6x+x-6\)
\(=2x^2-7x-14\)
b: \(B=\left(2a-b\right)\left(4a^2+2ab+b^2\right)=8a^3-b^3\)
c: \(C=\left(2+x\right)\left(2-x\right)\left(x+4\right)\)
\(=\left(4-x^2\right)\left(x+4\right)\)
\(=4x+16-x^3-4x^2\)
a)\(\left(x-3\right)\left(x+3\right)\left(x+2\right)-\left(x-1\right)\left(x^2-3\right)-5x\left(x+4\right)^2-\left(x-5\right)^2\)
\(=\left(x^2-9\right)\left(x+2\right)-\left(x^3-3x-x^2+3\right)-5x\left(x^2+8x+16\right)-\left(x^2-10x+25\right)\)
\(=x^3+2x^2-9x-18-x^3+x^2+3x-3-5x^3-40x^2-80x-x^2+10x-25\)
\(=-5x^3-38x^2-76x-46\)
b)\(2x\left(x-4\right)^2-\left(x+5\right)\left(x-2\right)\left(x+2\right)+2\left(x+5\right)^2-\left(x-1\right)^2\)
\(=2x\left(x^2-8x+16\right)-\left(x+5\right)\left(x^2-4\right)+2\left(x^2+10x+25\right)-\left(x^2-2x+1\right)\)
\(=2x^3-16x^2+32x-\left(x^3+5x^2-4x-20\right)+2x^2+20x+50-x^2+2x-1\)
\(=x^3-20x^2+58x+69\)
c)\(\left(x+5\right)^2-4x\left(2x+3\right)^2-\left(2x-1\right)\left(x+3\right)\left(x-3\right)\)
\(=x^2+10x+25-4x\left(4x^2+12x+9\right)-\left(2x-1\right)\left(x^2-9\right)\)
\(=x^2+10x+25-16x^3-48x^2-36x-\left(2x^3-x^2-18x+9\right)\)
\(=-18x^3-46x^2-8x+16\).
a) Ta có: \(\left(x-3\right)\left(x+3\right)\left(x+2\right)-\left(x-1\right)\left(x^2-3\right)-5x\left(x+4\right)^2-\left(x-5\right)^2\)
\(=\left(x^2-9\right)\left(x+2\right)-\left(x-1\right)\left(x^2-3\right)-5x\left(x^2+8x+16\right)-\left(x^2-10x+25\right)\)
\(=x^3+2x^2-9x-18-\left(x^3-3x-x^2+3\right)-5x^3-40x^2-80x-x^2+10x-25\)
\(=-4x^3-39x^2-79x-43-x^3+3x+x^2-3\)
\(=-5x^3-38x^2-76x-46\)
b) Ta có: \(2x\left(x-4\right)^2-\left(x+5\right)\left(x-2\right)\left(x+2\right)+2\left(x+5\right)^2-\left(x-1\right)^2\)
\(=2x\left(x^2-8x+16\right)-\left(x+5\right)\left(x^2-4\right)+2x^2+20x+50-x^2+2x-1\)
\(=2x^3-16x^2+32x-x^3+4x-5x^2+20+x^2+22x+49\)
\(=x^3-20x^2+56x+49\)
c) Ta có: \(\left(x+5\right)^2-4x\left(2x+3\right)^2-\left(2x-1\right)\left(x-3\right)\left(x+3\right)\)
\(=x^2+10x+25-4x\left(4x^2+12x+9\right)-\left(2x-1\right)\left(x^2-9\right)\)
\(=x^2+10x+25-16x^3+48x-36x-2x^3+18x+x^2-9\)
\(=-18x^3+2x^2+40x+16\)