Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =2015+6-5=2016
b: =10căn 2+5căn 2-6căn 2=9căn 2
c: =3căn 3-4căn 3-5căn 3=-6căn 3
d: =2căn 3+3căn 3-4căn 3=căn 3
\(A=2015+6-5==2015+1=2016\)
\(B=5\sqrt{2^3}+\sqrt{5^2.2}-2\sqrt{3^2.2}\\ =10\sqrt{2}+5\sqrt{2}-6\sqrt{2}\\ =\left(10+5-6\right)\sqrt{2}=9\sqrt{2}\)
\(C=\sqrt{3^3}-2\sqrt{2^2.3}-\sqrt{5^2.3}\\ =3\sqrt{3}-4\sqrt{3}-5\sqrt{3}\\ =\left(3-4-5\right)\sqrt{3}=-6\sqrt{3}\)
\(D=\sqrt{2^2.3}+\sqrt{3^3}-\sqrt{4^2.3}\\ =2\sqrt{3}+3\sqrt{3}-4\sqrt{3}\\ =\left(2+3-4\right)\sqrt{3}=\sqrt{3}\)
a) \(E=2\sqrt{40\sqrt{12}}+3\sqrt{5\sqrt{48}}-2\sqrt{\sqrt{75}}-4\sqrt{15\sqrt{27}}.\)
\(=8\sqrt{5\sqrt{3}}+6\sqrt{5\sqrt{3}}-2\sqrt{5\sqrt{3}-12\sqrt{5\sqrt{3}}}\)
\(=0\)
b) \(F=\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}.\)
Vì \(=\frac{5}{12}-\frac{1}{\sqrt{6}}=\frac{5-2\sqrt{6}}{12}=\frac{\left(\sqrt{3}-\sqrt{2}\right)^2}{12}\)
\(\frac{1}{\sqrt{3}}+\frac{1}{2\sqrt{3}}=\frac{\sqrt{3}}{3}+\frac{\sqrt{2}}{6}=\frac{2\sqrt{3}+\sqrt{2}}{6}\)
Nên \(F=\frac{2\sqrt{3}+\sqrt{2}}{6}+\frac{1}{\sqrt{3}}\sqrt{\frac{\left(\sqrt{3}-\sqrt{2}\right)^2}{12}}=\frac{2\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}}{6}=\frac{3\sqrt{3}}{6}=\frac{\sqrt{3}}{2}\)
a: \(=3\sqrt{5}+2\sqrt{5}-2\sqrt{5}=3\sqrt{5}\)
b: \(=2\sqrt{2}+2\sqrt{2}+5\sqrt{2}=9\sqrt{2}\)
c: \(=4\sqrt{3}+3\sqrt{3}-3\sqrt{5}+2\sqrt{5}=7\sqrt{3}-\sqrt{5}\)
d: \(=5\sqrt{3}+4\sqrt{3}-10\sqrt{3}=-\sqrt{3}\)
e: \(=\left(\sqrt{7}-2\sqrt{3}\right)\cdot\sqrt{7}+2\sqrt{21}\)
=7-2*căn 21+2*căn 21
=7
f: \(=\left(2\sqrt{11}-3\sqrt{2}\right)\cdot\sqrt{11}+3\sqrt{22}\)
=22-3*căn 22+3*căn 22
=22
a) \(3\sqrt{5}+\sqrt{20}-2\sqrt{5}\)
\(=3\sqrt{5}+2\sqrt{5}-2\sqrt{5}\)
\(=3\sqrt{5}\)
b) \(2\sqrt{2}+\sqrt{8}+\sqrt{50}\)
\(=2\sqrt{2}+2\sqrt{2}+5\sqrt{2}\)
\(=9\sqrt{5}\)
c) \(4\sqrt{3}+\sqrt{27}-\sqrt{45}+2\sqrt{5}\)
\(=4\sqrt{3}+3\sqrt{3}-3\sqrt{5}+2\sqrt{5}\)
\(=7\sqrt{3}-\sqrt{5}\)
d) \(\sqrt{75}+\sqrt{48}-\sqrt{300}\)
\(=5\sqrt{3}+4\sqrt{3}-10\sqrt{3}\)
\(=-\sqrt{3}\)
e) \(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
\(=\left(2\sqrt{7}-2\sqrt{3}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
\(=\left(\sqrt{7}-2\sqrt{3}\right)\sqrt{7}+2\sqrt{21}\)
\(=7-2\sqrt{21}+2\sqrt{21}\)
\(=7\)
f) \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
\(=\left(3\sqrt{11}-3\sqrt{2}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
\(=\left(2\sqrt{11}-3\sqrt{2}\right)\sqrt{11}+3\sqrt{22}\)
\(=22-3\sqrt{22}+3\sqrt{22}\)
\(=22\)
g) \(3\sqrt{45}-5\sqrt{125x}+7\sqrt{20x}+28\)
\(=9\sqrt{5}-25\sqrt{5x}+14\sqrt{5x}+28\)
\(=9\sqrt{5}-11\sqrt{5x}+28\)
a: \(A=6\sqrt{3}+10\sqrt{3}-12\sqrt{3}=4\sqrt{3}\)
b: \(B=7\sqrt{3}+5\sqrt{3}-12\sqrt{3}=0\)
c: \(=12\sqrt{2}-6+3\left(9-4\sqrt{2}\right)=12\sqrt{2}-6+27-12\sqrt{2}=21\)
d: \(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}=4\sqrt{5}\)
\(I=\left(2\sqrt{3}-5\sqrt{27}+4\sqrt{12}\right):\sqrt{3}\)
\(=\left(2\sqrt{3}-5\sqrt{3}.\sqrt{3^2}+2\sqrt{2^2}.\sqrt{3}\right):\sqrt{3}\)
\(=\left(2\sqrt{3}-15\sqrt{3}+8\sqrt{3}\right):\sqrt{3}\)
\(=-5\sqrt{3}.\dfrac{1}{\sqrt{3}}\)
\(=-5\)
\(K=\sqrt{125}-4\sqrt{45}+3\sqrt{20}-\sqrt{80}\)
\(=\sqrt{5^2.5}-4\sqrt{3^2.5}+3\sqrt{2^2.5}-\sqrt{4^2.5}\)
\(=5\sqrt{5}-12\sqrt{5}+6\sqrt{5}-4\sqrt{5}\)
\(=\sqrt{5}.\left(5-12+6-4\right)\)
\(=-5\sqrt{5}\)
\(L=2\sqrt{9}+\sqrt{25}-5\sqrt{4}\)
\(=2\sqrt{3^2}+\sqrt{5^2}-5\sqrt{2^2}\)
\(=2.3+5-5.2\)
\(=1\)
\(N=2\sqrt{32}-5\sqrt{27}-4\sqrt{8}+3\sqrt{75}\)
\(=2.4\sqrt{2}-5.3\sqrt{3}-4.2\sqrt{2}+3.5\sqrt{3}\)
\(=8\sqrt{2}-8\sqrt{2}-15\sqrt{3}+15\sqrt{3}\)
\(=0\)
\(O=2\sqrt{3.5^2}-3\sqrt{3.2^2}+\sqrt{3.3^2}\)
\(=2.5\sqrt{3}-3.2\sqrt{3}+3\sqrt{3}\)
\(=10\sqrt{3}-6\sqrt{3}+3\sqrt{3}\)
\(=7\sqrt{3}\)
\(L=\dfrac{2\sqrt{3}-15\sqrt{3}+8\sqrt{3}}{\sqrt{3}}=2-15+8=-5\)
\(K=5\sqrt{5}-12\sqrt{5}+6\sqrt{5}-4\sqrt{5}=-5\sqrt{5}\)
L=2*3+5-5*2=5-4=1
N=8căn 2-8căn2-15căn3+15căn 3=0
O=10căn 3-6căn3+3căn3=7căn 3
a) \(\sqrt{12}+5\sqrt{3}-\sqrt{48}=\sqrt{2^2\cdot3}+5\sqrt{3}-\sqrt{4^2\cdot3}\)
\(=2\sqrt{3}+5\sqrt{3}-4\sqrt{3}=\left(2+5-4\right)\sqrt{3}=3\sqrt{3}\)
b) \(5\sqrt{5}+\sqrt{20}-3\sqrt{45}=5\sqrt{5}+\sqrt{2^2\cdot5}-3\sqrt{3^2\cdot5}\) \(=5\sqrt{5}+2\sqrt{5}-9\sqrt{5}=-2\sqrt{5}\)
c)
\(2\sqrt{32}+4\sqrt{8}-5\sqrt{18}=2\sqrt{4^2\cdot2}+4\sqrt{2^2\cdot2}-5\sqrt{3^2\cdot2}\) \(=8\sqrt{2}+8\sqrt{2}-15\sqrt{2}=\sqrt{2}\)
d)\(\sqrt{2^2\cdot3}+\sqrt{5^2\cdot3}-\sqrt{3^2\cdot3}=2\sqrt{3}+5\sqrt{3}-3\sqrt{3}=4\sqrt{3}\)
\(B=\frac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}=\frac{9\sqrt{5}+9\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{9\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=9\)
\(C=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{4}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}.\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(\sqrt{2}+1\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\sqrt{2}+1\)
mik chỉnh lại đề
\(D=\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}=\frac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}\)
\(=\frac{2\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}{3\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}=\frac{2}{3}\)
a: \(=3\sqrt{3}-2\sqrt{3}+4\sqrt{3}-5\sqrt{3}=2\sqrt{3}\)