Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+ac-b^2-bc=\left(a^2-b^2\right)+\left(ac-bc\right)=\left(a+b\right)\left(a-b\right)+c\left(a-b\right)=\)\(\left(a-b\right)\left(a+b+c\right)\)
Tương tự:
\(b^2+ab-c^2-ac=\left(b-c\right)\left(a+b+c\right)\)
\(c^2+bc-a^2-ab=\left(c-a\right)\left(a+b+c\right)\)
\(Q=\frac{1}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}+\frac{1}{\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}+\frac{1}{\left(a-b\right)\left(c-a\right)\left(a+b+c\right)}\)
\(=\frac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}=0\)
\(=\frac{-bc\left(b-c\right)}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}+\frac{-ca\left(c-a\right)}{\left(b-c\right)\left(a-b\right)\left(c-a\right)}+\frac{-ab\left(a-b\right)}{\left(c-a\right)\left(b-c\right)\left(a-b\right)}\)
\(=\frac{-b^2c+bc^2-c^2a+ca^2-a^2b+ab^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{b^2\left(a-c\right)+ca\left(a-c\right)-b\left(a-c\right)\left(a+c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{\left(a-c\right)\left(b^2+ca-ba-bc\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{\left(a-c\right)\left[b\left(b-a\right)-c\left(b-a\right)\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{\left(a-c\right)\left(b-c\right)\left(b-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(c-a\right)\left(b-c\right)\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)
Ta có
\(\frac{a^2-bc}{\left(a+b\right)\left(a+c\right)}=\frac{a^2+ab-bc-ab}{\left(a+b\right)\left(a+c\right)}=\frac{a\cdot\left(a+b\right)-b\cdot\left(c+a\right)}{\left(a+b\right)\left(c+a\right)}=\frac{a}{a+c}-\frac{b}{a+b}\left(1\right)\)
tương tự
\(\frac{b^2-bc}{\left(a+b\right)\left(b+c\right)}=\frac{b}{a+b}-\frac{c}{b+c}\left(2\right)\)
\(\frac{c^2-ab}{\left(c+a\right)\left(b+c\right)}=\frac{c}{c+b}-\frac{a}{a+b}\left(3\right)\)
Cộng (1);(2) và (3) ta có
\(\frac{a^2-bc}{\left(a+b\right)\left(a+c\right)}+\frac{b^2-ac}{\left(a+b\right)\left(b+c\right)}+\frac{c^2-ab}{\left(a+c\right)\left(c+b\right)}=\frac{a}{a+c}-\frac{b}{a+b}+\frac{b}{a+b}-\frac{c}{b+c}+\frac{c}{c+b}-\frac{a}{a+b}=0 \)
thank bạn nha