K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017
    

Áp dụng bất đẳng thức |m|+|n||m+n| .Dấu = xảy ra khi m,n cùng dấu

A|xa+xb|+|xc+xd|=|2xab|+|c+d2x|

|2xab2x+c+d|=|c+dab|

Dấu = xảy ra khi xa và xb cùng dấu hay(xa hoặc xb)

                        xc và xd cùng dấu hay(xc hoặc xd)

                        2xab và c+d2x cùng dấu hay (x+b2xc+d)

Vậy Min A =c+d-a-b khi bxc


 
4 tháng 11 2017

mới học lớp 6 à

5 tháng 9 2016

\(C=3-\frac{5}{2}\left|\frac{2}{5}-x\right|\)

Ta có: 

|2/5 - x| >/ 0 

=> 5/2 * |2/5 -x| >/ 0

=> 5/2 * |2/5 -x| -3 >/ -3

=> 3 - 5/2 * |2/5 -x|  \<  3

Vậy GTLN của C là 3. 

5 tháng 9 2016

(2/5-x)> hoặc=0

5/2(2/5-x)> hoặc =0

3-5/2(2/5-x)< hoặc =3

=> C< hoặc =3

=> Cmax=3 khi 3-5/2(2/5-x)=3

                           5/2(2/5-x)=0

                                (2/5-x)=0

                                2/5-x=0

                                      x=2/5

Vậy GTLN của C =3 khi x=2/5

                           

24 tháng 9 2020

\(B=2\left|4,5x-9\right|-18\)

Vì \(\left|4,5x-9\right|\ge0\forall x\)

=> \(2\left|4,5x-9\right|-18\ge-18\)

Dấu " = " xảy ra khi và chỉ khi |4,5x - 9| = 0 => 4,5x - 9 = 0 => 4,5x = 9 => x = 2

Vậy \(B_{min}=-18\)khi x = 2

\(C=\left(2x+1\right)^2-1990\)

Vì \(\left(2x+1\right)^2\ge0\forall x\)

=> \(\left(2x+1\right)^2-1990\ge-1990\forall x\)

Dấu " = " xảy ra khi và chỉ khi (2x + 1)2 = 0 => 2x + 1 = 0 => x = -1/2

Vậy \(C_{min}=-1990\)khi x = -1/2

\(D=\left(x+1\right)^2+\left|y+5\right|-\frac{3}{2}\)

Vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left|y-5\right|\ge0\forall y\end{cases}}\)

=> \(\left(x+1\right)^2+\left|y+5\right|\ge0\forall x\)

=> \(\left(x+1\right)^2+\left|y+5\right|-\frac{3}{2}\ge-\frac{3}{2}\forall x\)

Dấu " = " xảy ra khi và chỉ khi \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left|y+5\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=-5\end{cases}}\)

Vậy \(D_{min}=-\frac{3}{2}\)khi \(\hept{\begin{cases}x=-1\\y=-5\end{cases}}\)

6 tháng 8 2017

a)A=-|x-2|

Vì |x-2| \(\ge\)0 với mọi giá trị của x

=>-|x-2|\(\le\)0 với mọi giá trị của x

Vậy GTLN của biểu thức A là 0

Dấu "=" xảy ra khi |x-2|=0=>x-2=0 =>x=2

Vậy biểu thức A đạt GTLN là 0 khi x=2

b)B=-2+|1-x|

Vì|1-x|\(\ge\)0 với mọi x

   =>-2+|x-1|\(\ge\)-2

Vậy GTNN của biểu thức B là -2

Dấu "=" xảy ra khi |x-1|=0 =>x-1=0 =>x=1

Vậy biểu thức B đạt GTNN là -2 khi x=1

c)C=3-2|2-x|

Vì |2-x|\(\ge\)0 với mọi x

=> -|2-x|\(\le\)0 với mọi x

=>3-|2-x|\(\le\)3 với mọi x

Vậy GTLN của biểu thức C là 3

Dấu "=" xảy ra khi |2-x|=0 =>2-x=0 =>x=2

Vậy biểu thức C đạt GTLN là 3 khi x=2

\(a,\)\(A=-\left|x-2\right|\)

Ta có: \(\left|x-2\right|\ge0\)

\(\Rightarrow-\left|x-2\right|\le0\)

Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy A lớn nhất = 0 tại \(x=2\)

\(b,\)\(B=-2+\left|1-x\right|\)

Ta có: \(\left|1-x\right|\ge0\)

\(\Rightarrow-2+\left|1-x\right|\ge-2\)

Dấu "=" xảy ra \(\Leftrightarrow1-x=0\Leftrightarrow x=1\)

Vậy B nhỏ nhất = -2 tại x=1

\(c,\)\(C=3-2\left|2-x\right|\)

Ta có: \(\left|2-x\right|\ge0\Rightarrow-2\left|2-x\right|\le0\)

\(\Rightarrow3-2\left|2-x\right|\le3\)

Dấu ''='' xảy ra \(\Leftrightarrow2-x=0\Leftrightarrow x=2\)

Vậy C lớn nhất = 3 tại x=2