Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
\(\Rightarrow A=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}\) \(=\frac{a^2\left(a+1\right)+\left(a+1\right)+\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}\)
\(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)
\(=\frac{a^2+a-1}{a^2+a+1}\)
\(\left(a-b\right)\left(a^2+ab+b^2\right)=a^3+a^2b+ab^2-ba^2-ab^2+b^3=a^3+b^3\)
\(3^{28}.4^{14}.18^{35}.19^7\)
\(=3^{28}.\left(2^2\right)^{14}.\left(2.3^2\right)^{35}.19^7\)
\(=3^{28}.2^{28}.2^{35}.3^{70}.19^7\)
\(=2^{63}.3^{98}.19^7\)
P/S: mấy bài này cứ phân tích ra các thừa số nguyên tố mà làm