Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{81^{11}.3^{17}}{27^{10}.9^{15}}=\frac{3^{44}.3^{17}}{3^{30}.3^{30}}=\frac{3^{61}}{3^{60}}=3\)
giúp tớ nhé
tớ bị trừ 41 điểm
cảm ơn trước
cảm ơn huhuh
\(\frac{81^{11}.3^{17}}{27^{10}.9^{15}}=\frac{\left(3^4\right)^{11}.3^{17}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\frac{3^{44}.3^{17}}{3^{30}.3^{30}}=\frac{3^{61}}{3^{60}}=\frac{3^1}{1}=3\)
\(\frac{3^{17}\cdot81^{11}}{27^{10}\cdot9^{15}}\)
\(=\frac{3^{17}\cdot\left(3^4\right)^{11}}{\left(3^3\right)^{10}\cdot\left(3^2\right)^{15}}\)
\(=\frac{3^{17}\cdot3^{44}}{3^{30}\cdot3^{30}}\)
\(=\frac{3^{61}}{3^{60}}\)
\(=3\)
\(\frac{9^2\cdot2^{11}}{16^2\cdot6^3}\)
\(=\frac{\left(3^2\right)^2\cdot2^{11}}{\left(2^4\right)^2\cdot\left(2\cdot3\right)^3}\)
\(=\frac{3^4\cdot2^{11}}{2^8\cdot2^3\cdot3^3}\)
\(=\frac{3^4\cdot2^{11}}{2^{11}\cdot3^3}\)
\(=\frac{3^4}{3^3}\)
\(=3\)
317.8111/2710.915
=317.(34)11/(33)10.(32)15
=317.344/330.330
=361/360
=3
\(A=\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\frac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}=\frac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}=\frac{-2}{6}=-\frac{1}{3}\)
Ta có:\
\(A=\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)
\(A=\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9}{2^{10}.3^8+\left(2.3\right)^8.2^2.5}\)
\(A=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)
\(A=\frac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}\)
\(A=-\frac{2}{6}=-\frac{1}{3}\)
\(=\frac{2^{19}3^9+3\cdot5\cdot2^{18}\cdot3^8}{2^9\cdot3^9\cdot2^{10}+4^{10}\cdot3^{10}}=\frac{2^{19}\cdot3^9+5\cdot2^{18}\cdot3^9}{2^{19}\cdot3^9+2^{20}\cdot3^{10}}=\frac{2^{18}\cdot3^9\cdot\left(2+5\right)}{2^{19}\cdot3^9\left(1+6\right)}=\frac{1}{2}\)
\(\frac{4^6.9^5+6^9.120}{8^4.3^2-6^{11}}\)
\(=\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^2-2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{11}.3^2.\left(2-3^9\right)}\)
\(=\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^2.\left(2-3^9\right)}\)
\(=\frac{2.3^8.6}{2-3^9}\)
\(=\frac{2.2.3.3^8}{2-3^9}\)
\(=\frac{2^2.3^9}{2-3^9}\)
\(A=\frac{\left(9^2\right)^{11}.3^{17}}{\left(3^3\right)^{10}.9^{15}}=\frac{9^{22}.3^{17}}{3^{30}.9^{15}}=\frac{9^7}{3^{12}}=9\)