K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

- Phân tích ra nhân tử :

\(a^3+b^3+c^3-3abc=a^3+b^3+c^3+3a^2b-3ab^2+3ab^2-3ab^2-3abc\)\(=a^3+3a^2b+3ab^2+b^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\right]\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

Từ đây ta có \(A=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)}{a^2+b^2+c^2-ab-bc-ac}\)

\(\Rightarrow A=a+b+c\)

 

 

 

 

4 tháng 12 2017

a^3+b^3+c^3-3abc

<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc
<=>[(a+b)^3 +c^3] -3ab.(a+b+c)

<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)

<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)... 

<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)

thay vào và rút gọn ta được:\(a+b+c\)

25 tháng 11 2019

\(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)

\(=\frac{\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc}{a^2+b^2+c^2-ab-bc-ca}\)

\(=\frac{\left(a+b+c\right)^3\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc}{a^2+b^2+c^2-ab-bc-ca}\)

\(=\frac{\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc-c^2\right)-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-bc-ca}\)

\(=\frac{\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc-c^2-3ab\right)}{a^2+b^2+c^2-ab-bc-ca}\)

\(=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}\)

\(=a+b+c\)

21 tháng 6 2017

Tử \(a^3+b^3+c^3-3abc\)

\(=(a^3+b^3)+c^3-3abc\)

\(=(a+b)^3-3ab(a+b)+c^3-3abc\)

\(=(a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)\)

\(=(a+b+c)(a^2+2ab+b^2-ac-bc+c^2-3ab)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Khi đó \(A=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}=a+b+c\)

21 tháng 6 2017

Ta có :

\(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3abc-3a^2b-3ab^2\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\) Thay vào biểu thức ta được:

\(A=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)}{a^2+b^2+c^2-ab-bc-ac}=a+b+c\)

a: \(=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)-3abc}{a^2+b^2+c^2-ab-bc-ac}\)

\(=\dfrac{\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-bc-ac}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)}{a^2+b^2+c^2-ab-bc-ac}\)

=a+b+c

b: 

Sửa đề: \(=\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)

\(=\dfrac{\left(x-y\right)^3+z^3+3xy\left(x-y\right)+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{\left(x-y+z\right)\left(x^2-2xy+y^2-xz+yz+z^2\right)+3xy\left(x-y+z\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)

\(=\dfrac{\left(x-y+z\right)\left(x^2+y^2+z^2+xy-xz+yz\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)

\(=\dfrac{x-y+z}{2}\)

15 tháng 9 2023

a) \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}\)

\(=a+b+c\)

9 tháng 2 2020

a, Gợi ý nà :3

a^2 + b^2 - c^2 +2ab = (a^2 + b^2 + 2ab) -c^2 = (a+b)^2 - c^2 = (a + b - c)(a + b + c)

a^2 - b^2 + c^2 + 2ac = (a + c)^2 - b^2 = (a + b + c)(a - b + c)

b. Gợi ý tiếp luôn nà :3

a^3 + b^3 + c^3 - 3abc

= (a^3 + b^3 +3a^2 x b + 3ab^2) - 3ab(a+b) -3abc + c^3

= (a+b)^3 + c^3 - 3ab(a+b+c) 

= (a + b+ c)[(a+b)^2 - c(a+b) +c^2] - 3ab(a+b+c)

=(a+b+c)(a^2 + b^2 + c^2 -ac -bc + 2ab -3ab)

=(a+b+c)(a^2 + b^2 + c^2 - ab - bc -ca)

Rồi cứ thế rút gọn...

Học tốt nha bạn :3

9 tháng 2 2020

\(\frac{a^2+2ab+b^2-c^2}{a^2+2ac+c^2-b^2}=\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\frac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a-b+c\right)}=\frac{a+b-c}{a-b+c}\)

\(\text{nhận xét: ta có hằng đẳng thức:}\)

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

đó đến đây bạn làm tiếp

29 tháng 11 2016

Áp dụng hằng đẳng thức

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

Do \(a^3+b^3+c^3=3abc\) nên \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0.\)

Do đó : \(\left[\begin{array}{nghiempt}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{array}\right.\)

  • Nếu \(a+b+c=0\) thì do \(a,b,c\ne0\),ta có :

\(P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=-1\)

  • Nếu \(a^2+b^2+c^2-ab-bc-ac=0\) thì ta suy ra

\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

Điều này chỉ xảy ra khi \(a-b=0;b-c=0;a-c=0\Leftrightarrow a=b=c.\)

Khi đó \(P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\).

Vậy \(P=-1\) hoặc \(P=8.\)

29 tháng 12 2016

Bạn viết vậy mình không biết đâu là tử đâu là mẫu

29 tháng 12 2016

Sửa đề cho dễ đọc

\(1P=\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)

\(\Leftrightarrow1P=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}=a+b+c\)

9 tháng 7 2018

Bài 2:

a)  \(VP=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)\)

\(=a^3+b^3=VT\)  (đpcm)

b)  \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=a^3+ab^2+ac^2-a^2b-abc-a^2c+a^2b+b^3+bc^2-ab^2-b^2c-abc\)\(+a^2c+b^2c+c^3-abc-bc^2-ac^2\)

\(=a^3+b^3+c^3-3abc\)

9 tháng 7 2018

Bài 1:

\(N=\frac{x\left|x-2\right|}{x^2+8x-20}+12x-3\)

\(=\frac{x\left|x-2\right|}{\left(x-2\right)\left(x+10\right)}+12x-3\)

Nếu  \(x\ge2\)thì:     \(N=\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+10\right)}+12x-3\)

                                      \(=\frac{x}{x+10}+12x+3\)  (lm tiếp nhé)

Nếu  \(x< 2\) thì:     \(N=\frac{x\left(2-x\right)}{\left(x-2\right)\left(x+10\right)}+12x-3\)

                                         \(=\frac{-x}{x+10}+12x-3\)  (lm tiếp nhé)