K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017

a)

\(A=\left(x-6\right)^2+\left(x+6\right)^2\)

\(A=\left(x^2-2x6+6^2\right)+\left(x^2+2x6+6^2\right)\)

\(A=x^2-2x6+6^2+x^2+2x6+6^2\)

\(A=\left(x^2+x^2\right)+\left(-2x6+2x6\right)+\left(6^2+6^2\right)\)

\(A=2x^2+72\)

b)

\(B=\left(x^2+y^2+3^2+2xy+2x3+2y3\right)-\left(x^2+y^2+9\right)\)

\(B=x^2+y^2+3^3+2xy+2x3+2y3-x^2-y^2-9\)

\(B=\left(x^2-x^2\right)+\left(y^2-y^2\right)+\left(3^2-9\right)+2xy+2x3+2y3\)

\(B=2xy+2x3+2y3\)

Mình phải đi ngủ rồi, có gì mai làm tiếp nha haha

25 tháng 5 2017

c/

C = (5x - 2) . (5x + 2) - (5x - 1)2

C = [(5x)2 - 22] - [(5x)2 - 2 . 5x1 + 12]

C = (5x)2 - 22 - (5x)2 + 2 . 5x1 - 12

C = [(5x)2 - (5x)2] + (-22 + 2 - 12) + 5x1

C = 5 + 5x1.

17 tháng 6 2019

\(A=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)

\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)-4a^2b^2\)

\(=2a^2.2b^2-4a^2b^2=0\)

\(C=\left(2-6x\right)^2+\left(2-5x\right)^2+2\left(6x-2\right)\left(2-5x\right)\)

\(=\left[\left(2-6x\right)+\left(2-5x\right)\right]^2\)

\(=\left[4-11x\right]^2\)

\(=16-88x+121x^2\)

chúc bn học tốt

10 tháng 7 2023

\(a,\left(x+2\right)^2-9=0\\ \Leftrightarrow\left(x+2-3\right)\left(x+2+3\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\\ Vậy\dfrac{ }{ }S=\left\{1;-5\right\}\)

\(b,x^2-2x+1=25\\ \Leftrightarrow\left(x-1\right)^2=25\\ \Leftrightarrow\left(x-1\right)^2-25=0\\ \Leftrightarrow\left(x-1-5\right)\left(x-1+5\right)=0\\ \Leftrightarrow\left(x-6\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\\ Vậy\dfrac{ }{ }S=\left\{6;-4\right\}\)

\(c,\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\\ \Leftrightarrow25x^2+10x+1-25x^2+9=30\\ \Leftrightarrow25x^2+10x-25x^2=30-1-9\\ \Leftrightarrow10x=20\\ \Leftrightarrow x=2\\ Vậy\dfrac{ }{ }S=\left\{2\right\}\)

\(d,\left(x-1\right)\left(x^2+x+1\right)+x\left(x+2\right)\left(2-x\right)=5\\ \Leftrightarrow x^3-1-x\left(x^2-4\right)=5\\ \Leftrightarrow x^3-1-x^3+4x=5\\ \Leftrightarrow x^3-x^3+4x=5+1\\ \Leftrightarrow4x=6\\ \Leftrightarrow x=\dfrac{3}{2}\\ Vậy\dfrac{ }{ }S=\left\{\dfrac{3}{2}\right\}\)

a: =>(x+2-3)(x+2+3)=0

=>(x-1)(x+5)=0

=>x=1 hoặc x=-5

b: =>(x-1)^2=25

=>x-1=5 hoặc x-1=-5

=>x=-4 hoặc x=6

c: =>25x^2+10x+1-25x^2+9=30

=>10x+10=30

=>x+1=3

=>x=2

d: =>x^3-1-x(x^2-4)=5

=>x^3-1-x^3+4x=5

=>4x=6

=>x=3/2

6 tháng 6 2017

\(a,2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)

\(=2x^2+2y^2+x^2+2xy+y^2+x^2-2xy+y^2=3\left(x^2+y^2\right)\)\(b,\left(5x-1\right)+2\left(1-5x\right)\left(4x+5\right)+\left(5x+4\right)\)\(=\left[\left(5x-1\right)-\left(5x+4\right)\right]^2=25\)

6 tháng 6 2017

c)\(Q=\left(x-y\right)^3+\left(x+y\right)^3+\left(x-y\right)^3-3xy\left(x+y\right)\)

\(=x^3-3x^2y+3xy^2-y^3+x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-3xy^2-3x^2y\)

\(=x^3+y^3\)

d)\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(2P=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(2P=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(2P=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(2P=\left(5^{16}-1\right)\left(5^{16}+1\right)\)

\(2P=5^{32}-1\Rightarrow P=\dfrac{5^{32}-1}{2}\)

b: Ta có: \(\left(4x-y\right)\left(4x+y\right)-2\left(3x-2y\right)^2+\left(x-3y\right)^2\)

\(=16x^2-y^2-2\left(9x^2-12xy+4y^2\right)+x^2-6xy+9y^2\)

\(=17x^2-6xy+8y^2-18x^2+24xy-8y^2\)

\(=-x^2+18xy\)

c: Ta có: \(\left(2a-3b+4c\right)\left(2a-3b-4c\right)\)

\(=\left(2a-3b\right)^2-16c^2\)

\(=4a^2-12ab+9b^2-16c^2\)

24 tháng 6 2018

b) \(\left(3x^2-2x+1\right).\left(3x^2+2x+1\right)-\left(3x^2+1\right)^2\)=\(\left(3x^2\right)^2-\left(2x+1\right)^2-\left(3x^2+1\right)^2\)=\(\left(3x^2\right)^2-[\left(2x\right)^2+4x+1]-[\left(3x^2\right)^2+6x^2+1]\)=\(\left(2x\right)^2+4x+1+6x^2-1\)=\(4x^2+4x+6x^2\)=\(10x^2+4x\)

c)\(\left(x^2-5x+2\right)^2-2\left(x^2-5x+2\right)\left(5x-2\right)+\left(5x-2\right)^2\)=\([\left(x^2-5x+2\right)-\left(5x-2\right)]^2\)=\(x^2-5x+2-5x+2\)=\(x^2-10x+4\)=\(x^2-4x+2^2-6x\)=\(\left(x-2\right)^2-6x\)

a: \(=2x^3-3x-5x^3-x^2+x^2=-3x^3-3x\)

b: \(=3x^2-6x-5x+5x^2-8x^2+24\)

=-11x+24

27 tháng 11 2021

A=x3+1+2x+2-x3-2x=3

B=5x2+36x+7-5x2+5x=41x+7

26 tháng 5 2017

Q=\(\left(x-y\right)^3+x^3+3x^2y+3xy^2-\left(x-y\right)^3-3x^2y-3xy^2\)

Q=\(x^3+y^3\)

26 tháng 5 2017

P=\(\left(5x-1-5x-4\right)^2\)

P=25

8 tháng 7 2018

1272 + 146.127 + 732

= 1272 + 2 . 73 .127 + 732

= (127 + 73 ) 2

= 200 2