Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{A}{B}=\frac{\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+\frac{6}{4}+\frac{5}{5}+\frac{4}{6}+\frac{3}{7}+\frac{2}{8}+\frac{2}{9}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{1}{9}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\frac{10}{2}+\frac{10}{3}+\frac{10}{4}+...+\frac{10}{9}+\frac{10}{10}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{10\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}\)
\(\frac{A}{B}=10\)
\(A=\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{2}{8}+\frac{1}{9}\)
Tách 9=1+1+...+1 ( có 9 số 1)
\(\Rightarrow A=1+\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{2}{8}+1\right)+\left(\frac{1}{9}+1\right)\)
\(A=\frac{10}{10}+\frac{10}{2}+\frac{10}{3}+...+\frac{10}{8}+\frac{10}{9}\)
\(A=10.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)\)
\(\Rightarrow A:B=\frac{10.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}=10\) ( vì \(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\ne0\) )
Vậy \(A:B=10\)
\(S=\frac{3}{2}+\frac{5}{4}+\frac{9}{8}+\frac{17}{16}+\frac{33}{32}+\frac{65}{64}-7\)
\(S=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{4}\right)+\left(1+\frac{1}{8}\right)+\left(1+\frac{1}{16}\right)+\left(1+\frac{1}{32}\right)+\left(1+\frac{1}{64}\right)-7\)
\(S=\left(1+1+....+1\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{64}\right)-7\)
\(S=6+\left[\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+....+\left(\frac{1}{32}-\frac{1}{64}\right)\right]-7\)
\(S=6+\left(1-\frac{1}{64}\right)-7\)
\(S=6+\frac{63}{64}-7\)
\(S=\frac{447}{64}-7=-\frac{1}{64}\)
Gọi 3 phân số tối giản cần tìm là a,b,c
Theo bài ra ta có: \(\frac{a}{\frac{3}{\frac{1}{2}}}=\frac{b}{\frac{4}{\frac{1}{3}}}=\frac{c}{\frac{5}{\frac{1}{4}}}\)
\(\Rightarrow\frac{a}{6}=\frac{b}{12}=\frac{c}{20}=\frac{a+b+c}{6+12+20}=\frac{2}{38}=\frac{1}{19}\)
\(\Rightarrow a=\frac{6}{19};b=\frac{12}{19};c=\frac{20}{19}\)
Chưa có ai trả lời câu hỏi này, hãy gửi một câu trả lời để giúp Nguyễn Hải Đăng giải bài toán này.
\(A=\frac{\frac{1}{2}:\left(\frac{1}{3}\right)^2\cdot\left(\frac{3}{2}\right)^2}{-0,75:\left(\frac{1}{4}\right)^2\cdot\left(\frac{4}{3}\right)^3}\)
\(=\frac{\frac{81}{8}}{-\frac{256}{9}}=-\frac{729}{2048}\)
Bài 2:
\(\left(\frac{-2}{3}\right)^3:\frac{3}{4}+\left(\frac{-2}{3}\right)^4:\left(\frac{3}{2}\right)^2\)
\(=\left(\frac{-2}{3}\right)^3\cdot\frac{4}{3}+\left[\left(\frac{-2}{3}\right)^3\cdot\frac{4}{3}\right]\cdot\frac{-2}{3}\cdot\frac{1}{3}\)
\(=\frac{-32}{81}+\frac{-32}{81}\cdot\frac{-2}{9}\)
\(=\frac{-32}{81}\left(1+\frac{-2}{9}\right)=\frac{-32}{81}\cdot\frac{7}{9}=-\frac{224}{729}\)
Bài 3:
Xét 2 trường hợp:
TH1: \(\text{3-2x=0}\Rightarrow x=\frac{3}{2}\)(thỏa mãn)
TH2: \(x=\frac{1}{2}\)(thỏa mãn)
Bài 4:
Điều kiện: \(y\ge\frac{1}{3}:2=\frac{1}{6}\)
Xét \(\frac{1}{6}\le y\le\frac{1}{2}\) ta có:
\(\frac{1}{2}-y=2y-\frac{1}{3}\Rightarrow3y=\frac{5}{6}\Rightarrow y=\frac{5}{18}\)(chọn)
\(\Rightarrow y^3=\frac{125}{5832}\)
Xét \(y>\frac{1}{2}\)ta có:
\(y-\frac{1}{2}=2y-\frac{1}{3}\Rightarrow y=\frac{-1}{6}\) (loại)
\(\Rightarrow y^3=-\frac{1}{216}\)