Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Những đường thẳng song song với mặt phẳng (ABKI) là A’B’; D’C’; DC; GH.
b) Những đường thẳng vuông góc với mặt phẳng (DCC'D') là A'D'; B'C'; DG; CH; AI; BK.
c) Ta có: A'D' ⊥ (CDD'C') mà A’D’ nằm trong mặt phẳng (A’D’C’B’) nên (A'B'C'D') ⊥ (CDD'C')
a. Ta có: A1B1 // mp(ABCD)
A1B1 // mp(CDD1C1)
b. Ta có: AC // A1C1
Suy ra: AC không thuộc mp(A1B1C1)
a) Những đường thẳng song song với mặt phẳng (EFGH) là: AB; BC; CD; DA.
b) Đường thẳng AB song song với những mặt phẳng: (CDHG); (EFGH); (DCFE)
c) Đường thẳng AD song song với những đường thẳng: BC, FG, EH
a) Các đường thẳng song song với nhau:
- Hai đường thẳng mép thước kẻ đối diện nhau.
- Hai đường thẳng mép bàn đối diện nhau.
b) Các đường thẳng cắt nhau:
- Các đường thẳng góc tường và chân tường là hai đường thẳng cắt nhau.
- Hai thanh chắn khung cửa sổ cắt nhau.
c) Các mặt phẳng song song với nhau
- Mặt sàn nhà và mặt trần nhà là hai mặt phẳng song song
d) Các đường thẳng vuông góc với nhau
- Hai cạnh góc vuông của thước eke
e) Các đường thẳng vuông góc với các mặt phẳng:
- Đường góc tường vuông góc với mặt sàn hoặc với trần nhà.
f) Các mặt phẳng vuông góc với nhau:
- Tường nhà vuông góc với nền nhà.
Ta có:AC // A 1 C 1
Suy ra: AC không thuộc mp( A 1 B 1 C 1 )
a) Những đường thẳng song song với mặt phẳng (ABKI) là DG; CH; A'D'; B'C'; A'B'; D'C'; DC; JH.
b) Những đường thẳng vuông góc với mặt phẳng (DCC'D') là A'D'; B'C'; DG; CH; AI; BK.
c) Ta có: A'D' ⊥ (CDD'C') => (A'B'C'D') \(\perp\) (CDD'C')
a) Những đường thẳng song song với mặt phẳng (ABKI) là : A’B’; D’C’; DC; JH
b) Những đường thẳng vuông góc với mặt phẳng (DCC’D’) là : A’D’; B’C’DJ; CH; AI; BK
c) Hai mặt phẳng (A’B’C’D’) và (CDD’C’) vuông góc với nhau
a) \(\left\{{}\begin{matrix}mp\left(ABCD\right):AB=CD\left(1\right)\\mp\left(ABB'A'\right):AB=A'B'\left(2\right)\\mp\left(CDD'C'\right):CD=C'D'\left(3\right)\\mp\left(A'B'C'D'\right):A'B'=C'D'\left(4\right)\end{matrix}\right.-\text{Tính chất hình chữ nhật}\)
Từ (1) và (3) => \(AB=CD=C'D'\) (*)
Từ (2) và (4) => \(AB=A'B'=C'D'\) (**)
Vậy từ(*) và (**) suy ra : \(AB=CD=C'D'=A'B'\)
b) \(C'D'//CD\Leftrightarrow\left\{{}\begin{matrix}C'D'\in mp\left(CDD'C'\right)\\CD\in\left(CDD'C'\right)\\\text{Không có điểm chung}\end{matrix}\right.\)
c) * \(AD//mp\left(BCC'B'\right)\) vì :
\(\left\{{}\begin{matrix}AD\notin mp\left(BCC'B'\right)\\AD//BC\end{matrix}\right.\)
* \(AD//mp\left(A'B'C'D'\right)\) vì :
\(\left\{{}\begin{matrix}AD\notin mp\left(A'B'C'D'\right)\\AD//A'D'\end{matrix}\right.\)
d) \(mp\left(ADD'A'\right)//mp\left(BCC'B'\right)\)
Ta có: A 1 B 1 //mp(ABCD)
A 1 B 1 // mp( C D D 1 C 1 )