Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(S=5+5^2+5^3+...+5^{2012}\)
\(=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{2007}+5^{2010}\right)+5^{2011}+5^{2012}\)
\(=5.\left(1+5^3\right)+5^2.\left(1+5^3\right)+...+5^{2007}.\left(1+5^3\right)+5^{2011}+5^{2012}\)
\(=5.126+5^2.126+...+5^{2017}.126+6+5^{2011}+5^{2012}\)
\(=126.\left(5+5^2+...+5^{2007}\right)+5^{2011}+5^{2012}\)
Do \(126.\left(5+5^2+...+5^{2007}\right)⋮126\)
\(5^{2011}+5^{2012}⋮̸126\)
\(\Rightarrow126.\left(5+5^2+...+5^{2007}\right)+5^{2011}+5^{2012}⋮̸126\)
hay \(S⋮̸126\)
Vậy ...
S=5+5^2+5^3+5^4+5^5+5^6+...+5^2004
=(5+5^2+5^3+5^4)+(5^5+5^6+5^7+5^8)+...+(5^2001+5^2002+5^2003+5^2004)
=780+5^4(5+5^2+5^3+5^4)+...+5^2000(5+5^2+5^3+5^4)
=780(1+5^4+...+5^2000) chia hết cho 65
S=5+5^2+5^3+5^4+5^5+5^6+...+5^2004
=(5+5^2+5^3+5^4+5^5+5^6)+...+(5^1999+5^2000+5^2001+5^2002+5^2003+5^2004)
=19530+...+5^1998(5+5^2+5^3+5^4+5^5+5^6)
=19530(1+...+5^1998) chia hết cho 126
Cho S=5+52+53+...+52004 chứng minh S chia hết cho 126 và chia hết cho 65. Mong các bạn giúp đỡ mình!
S = 5 + 5^2 + 5^3 + 5^4 + 5^5 + 5^6 + ... + 5^2004
5S = 5^2 + 5^3 + 5^4 + 5^5 + 5^6 + ... + 5^2004 + 5^2005
=> 4S = 5^2005 - 5 = 5 (5^2004 - 1) => S = 5 (5^2004 - 1)/4
Để chứng minh S chia hết cho 126 ta chứng minh 5 (5^2004 - 1) chia hết cho 126.4=504=7.8.9
+ 7: Có 5^2 = 25 chia 7 dư (-3) => 5^2004 = (5^2)^1002 đồng dư vs (-3)^1002 = 3^1002 trong phép chia cho 7.
Lại có 3^3 = 27 chia 7 dư (-1) => 3^1002 = (3^3)^334 đồng dư vs (-1)^334 = 1 trong phép chia cho 7 => 3^1002 chia 7 dư 1
=> (5^2004 -1) chia hết cho 7
+ 8: Có 5^2 = 25 chia 8 dư 1 => 5^2004 = (5^2)^1002 đồng dư vs 1^1002 =1 trong phép chia cho 8
=> 5^2004 chia 8 dư 1 => (5^2004 - 1) chia hết cho 8
+ 9: Có 5^2 = 25 chia 9 dư (-2) => 5^2004 = (5^2)^1002 đồng dư vs (-2)^1002 = 2^1002 trong phép chia cho 9
Lại có: 2^3 = 8 chia 9 dư (-1) => 2^1002 = (2^3)^334 đồng dư vs (-1)^334 =1 trong phép chia cho 9
=> 2^1002 chia 9 dư 1
Suy ra 5^2004 chia 9 dư 1 => (5^2004 - 1) chia hết cho 9
Vì 7,8,9 đôi một ng tố cùng nhau nên (5^2004 - 1) chia hết cho 7.8.9 = 504 => đpcm.
Để CM S chia hết cho 65 = 5.13 ta chứng minh (5^2004 - 1) chia hết cho 13
Có 5^2 = 25 chia 13 dư (-1) => 5^2004 đồng dư vs (-1)^1002 = 1 trong phép chia cho 13 => 5^2004 chia 13 dư 1 => 5^2004 -1 chia hết cho 13
Vậy S chia hết cho 65
Tick nha
a) \(5S=5^2+5^3+5^4+...+5^{2006}+5^{2007}\)
\(5S-S=\left(5^2+5^3+...+5^{2007}\right)-\left(5+5^2+5^3+...+5^{2006}\right)\)
\(4S=\left(5^{2007}-5\right)\)
\(S=\frac{\left(5^{2007}-5\right)}{4}\)
b)\(S=\left(5+5^4\right)+\left(5^2+5^5\right)+...+\left(5^{2003}+5^{2006}\right)\)
\(S=5.\left(1+5^3\right)+5^2.\left(1+5^3\right)+...+5^{2003}.\left(1+5^3\right)\)
\(S=5.126+5^2.126+...+5^{2003}.126\)
\(S=126.\left(5+5^2+...+5^{2003}\right)\)
vì\(126.\left(5+562+...+5^{2003}\right)\)chia hết cho 126
nên \(S\)chia hết cho 126
ta có :s=5+5^2+5^3+....+5^2012
=(5+5^4)+(5^2+5^5)+(5^3+5^6)+........+(5^2009+5^2012)
=5x(1+5^3)+5^2x(1+5^3)+5^3x(1+5^3)+.......+5^2009x(1+5^3)
=5x126+5^2x126+5^3x26+......+5^2009x126
=126x(5+5^2+5^3+....+5^2009)
tích này chia hết cho 126
suy ra s chia het cho 126
chú ý : dấu x trên là dấu nhân nhé bn
to nha :))
chứng minh ko chia hết mà thành long ko cs sai đề đâu