Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với x=2018 thì 2019=x+1
\(\Rightarrow A=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+...+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(\Rightarrow A=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)
\(\Rightarrow A=1\)
\(a;x^3-\dfrac{1}{4}x=0\)
\(x\left(x^2-\dfrac{1}{4}\right)=0\)
\(x\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
\(b,x^2-10x=-25\)
\(x^2-10x+25=0\)
\(\left(x-5\right)^2=0\)
\(\Rightarrow x=5\)
\(c,x^2-2019x+2018=0\)
\(x^2-x-2018x+2018=0\)
\(x\left(x-1\right)+2018\left(x-1\right)=0\)
\(\left(x+2018\right)\left(x-1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=-2018\\x=1\end{matrix}\right.\)
\(x^2+2019x=2020\)
\(x\left(x+2019\right)=2020\)
Tách 2020 ra 2 thừa số có hiệu là 2019: 2020 = 1*2020 = (-1) * (-2020)
Mà thừa số x luôn bé hơn thừa số x + 2019
\(\Rightarrow x\in\left\{1;-2020\right\}\)
\(x^4+2019x^2+2018x+2019\)
\(=x^4+x^2+1+2018\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)+2018\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2019\right)\)
\(x^4+2019x^2+2018x+2019\)
\(=x^4-x^3+x^3+2019x^2-x^2+x^2+2019x-x+2019\)
\(=\left(x^4-x^3+2019x^2\right)+\left(x^3-x^2+2019x\right)+\left(x^2-x+2019\right)\)
\(=x^2\left(x^2-x+2019\right)+x\left(x^2-x+2019\right)+\left(x^2-x+2019\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2019\right)\)
\(=x^4-x+2019x^2+2019x+2019\)
\(=x\left(x^3-1\right)+2019\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2019\left(x^2+x+1\right)\)
\(=\left(x^2-x\right)\left(x^2+x+1\right)+2019\left(x^2+x+1\right)\)
\(=\left(x^2-x+2019\right)\left(x^2+x+1\right)\)
\(x^4+2019x^2+2018x+2019\)
\(=\left(x^4-x\right)+\left(2019x^2+2019x+2019\right)\)
\(=x\left(x^3-1\right)+2019\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2019\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2019\right]\)
\(=\left(x^2+x+1\right)\left(x^2-x+2019\right)\)
\(x^3+2019x^2+2019x+2018=x^2\left(x+2018\right)+x\left(x+2018\right)+\left(x+2018\right)=\left(x+2018\right)\left(x^2+x+1\right)\)