K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2019

\(x^2-5\)

\(=x^2-\left(\sqrt{5}\right)^2\)

\(=\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)\)

24 tháng 6 2019

\(x^2-5=x^2-\left(\sqrt{5}\right)^2=\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)\)

21 tháng 8 2015

x3-x2-4=x3-2x2+x2-4=x2(x-2)+(x-2)(x+2)=(x-2)(x2+x+2)

10 tháng 6 2017

\(x^3-x^2-4\)

\(=x^3+x^2-2x^2-4\)

\(=\left(x^3-2x^2\right)+\left(x^2-4\right)\)

\(=x^2\left(x-2\right)+\left(x+2\right)\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+x+2\right)\)

25 tháng 6 2015

    x^2 - 10x - 16 

= x^2 - 2.x.5 + 25 - 25 - 1 6

= ( x - 5)^2      - 41 

=(  x - 5 )^2  - \(\left(\sqrt{41}\right)^2\)

= ( x - 5 - căn 41 ) ( x - 5 + căn 41)

25 tháng 6 2015

thang Tran làm thế hơi rảnh 

của mjk

x2-10x-16

=x2-2x-8x-16

=x(x-2)-8(x-2)

=(x-2)(x-8)

25 tháng 6 2019

=>(x-\(\sqrt{5}\))2

=>(x-\(\sqrt{5}\)) (x-\(\sqrt{5}\))

1 tháng 8 2017

\(\left(x-3\right).\left(x+3\right)\)\(+\left(x-3\right)\left(x+4\right)\)=\(\left(x-3\right)\left(x+3+x+4\right)=\left(x-3\right)\left(2x+7\right)\)

21 tháng 10 2016

\(x^3\left(x^2-7\right)^2-36x=x^3\left(x^4-14x^2+49\right)-36x\)

=\(x^7-14x^5+49x^3-36x\)

=\(x^7-x^6+x^6-x^5-13x^5+13x^4-13x^4+13x^3+36x^3-36x\)

=\(x^6\left(x-1\right)+x^5\left(x-1\right)-13x^4\left(x-1\right)-13x^3\left(x-1\right)+36x\left(x^2-1\right)\)

=\(x\left(x-1\right)\left(x^5+x^4-13x^3-13x^2+36x+36\right)\)

=\(x\left(x-1\right)\left[x^4\left(x+1\right)-13x^2\left(x+1\right)+36\left(x+1\right)\right]\)

=\(x\left(x-1\right)\left(x+1\right)\left(x^4-13x^2+36\right)\)

đặt x^2 =a (a>=0) thì xét đa thức \(x^4-13x^2+36=a^2-13a+36\)

xét \(\Delta=b^2-4ac=169-4.36=25\)

\(\Delta>0\)→phương trình có 2 nghiệm riêng biệt là \(\left[\begin{array}{nghiempt}a_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{13+5}{2}=9\\a_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{13-5}{2}=4\end{array}\right.\)(t/m a>=0)

vậy bt ban đầu :\(x\left(x-1\right)\left(x+1\right)\left(x^2-4\right)\left(x^2-9\right)\)

=\(\left(x-3\right)\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

20 tháng 8 2016

a/ \(x^2-4x+3=\left(x^2-x\right)-\left(3x-3\right)=x\left(x-1\right)-3\left(x-1\right)=\left(x-1\right)\left(x-3\right)\)

b/ \(3x^2-5x+2=\left(3x^2-3x\right)-\left(2x-2\right)=3x\left(x-1\right)-2\left(x-1\right)=\left(x-1\right)\left(3x-2\right)\)

20 tháng 8 2016

\(x^2-4x+3\)

\(=x^2-3x-x-3\)

\(=x\left(x-1\right)-3\left(x-1\right)\)

\(=\left(x-3\right)\left(x-1\right)\)

\(3x^2-5x+2\)

\(=3x^2-3x-2x+2\)

\(=3x\left(x-1\right)-2\left(x-1\right)\)

\(=\left(3x-2\right)\left(x-1\right)\)