Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(2x-1\right)^2+\left(x-2\right)\left(x+2\right)=\left(5x+1\right)\left(x-4\right)-12\)
\(\left(4x^2-4x+1\right)+x^2-4=5x^2-19x-4-12\)
\(5x^2-4x-3=5x^2-19x-16\)
\(\left(5x^2-5x^2\right)+\left(19x-4x\right)+\left(16-3\right)=0\)\(15x+13=0\)\(x=-\frac{13}{15}\)
Câu 1:
Ta có:\(x\left(x^2-y\right)+x\left(y^2-y\right)-x\left(x^2+y^2\right)\)
\(=x\left(x^2-y+y^2-y-x^2-y^2\right)\)
\(=-2xy\)
Tại \(x=\frac{1}{2};y=-100\) PT có dạng:
\(=-2.\frac{1}{2}.\left(-100\right)=100\)
Dạo này lười viết đề :(((
a, \(\Leftrightarrow4x^2+12x+9-x^2+2x-1=0\)
\(\Leftrightarrow3x^2+14x+8=0\)
\(\Leftrightarrow\left(3x^2+12x\right)+\left(2x+8\right)=0\)
\(\Leftrightarrow3x\left(x+4\right)+2\left(x+4\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x+4\right)=0\)
⇔ \(\left[{}\begin{matrix}x=-\frac{2}{3}\\x=-4\end{matrix}\right.\)
b, \(\Leftrightarrow x\left(9-x^2\right)+x^3-3x^2+3x-1=-1\)
\(\Leftrightarrow9x-x^3+x^3-3x^2+3x=0\)
\(\Leftrightarrow12x-3x^2=0\)
\(\Leftrightarrow4x-x^2=0\)
\(\Leftrightarrow x\left(4-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
1, (x2 + 1)(x - 3) - (x - 3)(x2 - 1)
= (x - 3)(x2 + 1 - x2 + 1)
= (x - 3).2
= 2x - 6
2, A = (x - 3)(x + 3) - (x - 2)2
A = x2 - 9 - (x2 - 4x + 4)
A = x2 - 9 - x2 + 4x - 4
A = 4x - 13
1 )
\(\left(x^2+1\right)\left(x-3\right)-\left(x-3\right)\left(x^2-1\right).\)
\(=\left(x-3\right)\left(x^2+1-x^2+1\right)\)
\(=\left(x-3\right).2\)
\(=2x-6\)
2
\(\left(x-3\right)\left(x+3\right)-\left(x-2\right)^2\)
=\(=x^2-9-x^2+4x-4\)
\(=4x-13\)
4a) \(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+b^2+2ab\)
=> (a+b)^2=(a-b)^2+4ab
- 2x – x2 + 2 – x – (3x2 + 6x + 5x +10) = – 4x2 + 2
- 2x – x2 + 2 – x – 3x2 – 6x – 5x – 10 = – 4x2 + 2 –10x = 10 x = – 1
- 2x2 – 6x + x – 3 = 0
(x – 3)(2x + 1) = 0
x = 3 hay x = -1/2
Bài 1 :
1) 4x2 - y2 = ( 2x + y ) ( 2x - y )
2) 9x2 - 4y2 = ( 3x - 2y ) ( 3x + 2y )
3) 4x2 + y2 + 4xy = ( 2x + y )2
Bài 2:
1) 2x2 + 8x = 0
=> 2x ( x + 4 ) = 0
=> \(\orbr{\begin{cases}2x=0\\x+4=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)
2) 3 ( x - 4 ) + x2 - 4x = 0
=> 3 ( x - 4 ) + x ( x - 4 ) = 0
=> ( x - 4 ) ( 3 + x ) = 0
=> \(\orbr{\begin{cases}x-4=0\\3+x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=4\\x=-3\end{cases}}\)
3) 3 ( x - 2 ) = x2 - 2x
=> 3 ( x - 2 ) - x2 + 2x = 0
=> 3 ( x - 2 ) - x ( x - 2 ) = 0
=> ( x - 2 ) ( 3 - x ) = 0
=> \(\orbr{\begin{cases}x-2=0\\3-x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
4) x ( x - 2 ) - 6 ( 2 - x ) = 0
=> x ( x - 2 ) + 6 ( x - 2 ) = 0
=> ( x - 2 ) ( x + 6 ) = 0
=> \(\orbr{\begin{cases}x-2=0\\x+6=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=2\\x=-6\end{cases}}\)
5) 2x ( x + 5 ) = x2 + 5x
=> 2x ( x + 5 ) - x2 - 5x = 0
=> 2x ( x + 5 ) - x ( x + 5 ) = 0
=> ( x + 5 ) ( 2x - x ) = 0
=> \(\orbr{\begin{cases}x+5=0\\2x-x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-5\\x=0\end{cases}}\)
6 ) ( x - 2 )2 - x ( x + 3 ) = 9
=> x2 - 4x + 4 - x2 - 3x = 9
=> - 7x + 4 = 9
=> - 7x = 5
=> x = \(-\frac{5}{7}\)
\(1,4x^2-y^2=\left(2x\right)^2-y^2=\left(2x-y\right)\left(2x+y\right)\)
\(2,9x^2-4y^2=\left(3x\right)^2-\left(2y\right)^2=\left(3x-2y\right)\left(3x+2y\right)\)
\(3,4x^2+y^2+4xy=\left(2x\right)^2+2.2x.y+y^2=\left(2x+y\right)^2\)
\(1,2x^2+8x=0\Rightarrow2x\left(x+4\right)=0\Rightarrow\orbr{\begin{cases}2x=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)
\(2,3\left(x-4\right)+x^2-4x=0\)
\(\Rightarrow3\left(x-4\right)+x\left(x-4\right)=0\)
\(\Rightarrow\left(3+x\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3+x=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}\)
\(3,3\left(x-2\right)=x^2-2x\)
\(\Rightarrow3\left(x-2\right)-x^2+2x=0\)
\(\Rightarrow3\left(x-2\right)-x\left(x-2\right)=0\)
\(\Rightarrow\left(3-x\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3-x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)
\(4,x\left(x-2\right)-6\left(2-x\right)=0\)
\(\Rightarrow x\left(x-2\right)+6\left(x-2\right)=0\)
\(\Rightarrow\left(x+6\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+6=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-6\\x=2\end{cases}}\)