Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\left(x-8\right)\left(x^3+8\right)=0\)
=>\(\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=8\\x^3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b: \(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
=>\(4x-3-x-5=30-3x\)
=>3x-8=30-3x
=>6x=38
=>\(x=\dfrac{38}{6}=\dfrac{19}{3}\)
Bài 6:
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC
b: Ta có: HB=HC
H nằm giữa B và C
Do đó: H là trung điểm của BC
=>\(HB=HC=\dfrac{8}{2}=4\left(cm\right)\)
ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AH^2=5^2-4^2=9\)
=>\(AH=\sqrt{9}=3\left(cm\right)\)
c: Ta có: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
=>HD=HE
=>ΔHDE cân tại H
d: Ta có: HD=HE
HE<HC(ΔHEC vuông tại E)
Do đó:HD<HC
\(P\left(x\right)+Q\left(x\right)=\left(2x^4+x^3-4x+5\right)+\left(x^4+3x^3+2x-1\right)\)
\(=2x^4+x^3-4x+5+x^4+3x^3+2x-1\)
\(=\left(2x^4+x^4\right)+\left(x^3+3x^3\right)+\left(-4x+2x\right)+\left(5-1\right)\)
\(=3x^4+4x^3-2x+4\)
\(R\left(x\right)+P\left(x\right)=x^4-2x^2+1\)
\(\Rightarrow R\left(x\right)=\left(x^4-2x^2+1\right)-P\left(x\right)\)
\(\Rightarrow R\left(x\right)=\left(x^4-2x^2+1\right)-\left(2x^4+x^3-4x+5\right)\)
\(\Rightarrow R\left(x\right)=x^4-2x^2+1-2x^4-x^3+4x-5\)
\(\Rightarrow R\left(x\right)=\left(x^4-2x^4\right)+\left(-2x^2\right)+\left(1-5\right)+\left(-x^3\right)+4x\)
\(\Rightarrow R\left(x\right)=-x^4-2x^2-4-x^3+4x\)
\(P\left(x\right)-2Q\left(x\right)=2x^3-3x^2+x-2\left(x^3-x^2+2x+1\right).\\ =2x^3-3x^2+x-2x^3+2x^2-4x-2.\\ =-x^2-3x-2.\)
olm sẽ hướng dẫn em làm bài này như sau:
Bước 1: em giải phương trình tìm; \(x\); y
Bước 2: thay\(x;y\) vào P
(\(x-1\))2022 + |y + 1| = 0
Vì (\(x-1\))2022 ≥ 0 ∀ \(x\); |y + 1| ≥ 0 ∀ y
⇒ (\(x\) - 1)2022 + |y + 1| = 0
⇔ \(\left\{{}\begin{matrix}\left(x-1\right)^{2022}=0\\y+1=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\) (1)
Thay (1) vào P ta có:
12023.(-1)2022 : )(2.1- 1)2022 + 2023
= 1 + 2023
= 2024
\(\left(2x-1\right)^{2020}+\left(y-\frac{2}{5}\right)^{2022}+\left|x+y-z\right|=0\)
Ta có : \(\left(2x-1\right)^{2020}\ge0\forall x;\left(y-\frac{2}{5}\right)^{2022}\ge0\forall x;\left|x+y-z\right|\ge0\forall x;y;z\)
Dấu bằng xảy ra <=> \(x=\frac{1}{2};y=\frac{2}{5};z=x+y=\frac{1}{2}+\frac{2}{5}=\frac{9}{10}\)
Vậy \(x=\frac{1}{2};y=\frac{2}{5};z=\frac{9}{10}\)
P(x) có bậc là 4
Q(x) = x² - 2x + 1 - x²
= -2x + 1
Do đó Q(x) có bậc là 1
R(x) có bậc là 0
\(H\left(x\right)=F\left(x\right)+G\left(x\right)=\left(x^5-3x^2-x^3-x^2-2x+5\right)+\left(x^5-x^4+x^2-3x+x^2+1\right)\\ =x^5-3x^2-x^3-x^2-2x+5+x^5-x^4+x^2-3x+x^2+1\\ =\left(x^5+x^5\right)-x^4-x^3-\left(3x^2+x^2-x^2-x^2\right)-\left(2x+3x\right)+5\\ =2x^5-x^4-x^3-2x^2-5x+5\)
P(2)+P(1/2)=2*2-1=3
P(1/2)+P(2)=2*1/2-1=1
=>Ko tồn tại P(x) thỏa mãn đièu kiện