K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

làm luôn nha :

a) đặc : \(f\left(x\right)=y=-x^2-4x-5\)

ta chọn \(a=-3;b=-4\) thuộc \(\left(-\infty;-2\right)\)

\(\Rightarrow\dfrac{f\left(a\right)-f\left(b\right)}{a-b}=\dfrac{-\left(-3\right)^2-4\left(-3\right)-5-\left(-\left(-4\right)^2-4\left(-4\right)-5\right)}{-3-\left(-4\right)}=3\)

\(\Rightarrow\) hàm số này đồng biến .

b) đặc \(f\left(x\right)=y=\dfrac{x+2}{x-1}\)

ta chọn \(a=-1;b=0\) thuộc \(\left(-\infty;1\right)\)

\(\Rightarrow\dfrac{f\left(a\right)-f\left(b\right)}{a-b}=\dfrac{\dfrac{-1+2}{-1-1}-\dfrac{0+2}{0-1}}{-1}=\dfrac{-3}{2}\)

\(\Rightarrow\) hàm số này nghịch biến .

12 tháng 8 2018

làm cách không chọn giá trị theo yc :

a) đặc : \(f\left(x\right)=y=-x^2-4x-5\)

giả sử : \(a< b< -2\)

khi đó ta có : \(\dfrac{f\left(a\right)-f\left(b\right)}{a-b}=\dfrac{-a^2-4a-5-\left(-b^2-4b-5\right)}{a-b}\)

\(\dfrac{b^2-a^2+4b-4a}{a-b}=\dfrac{\left(b-a\right)\left(a+b\right)+4\left(b-a\right)}{a-b}\)

\(=\dfrac{-\left(a+b+4\right)\left(a-b\right)}{a-b}=-\left(a+b+4\right)\)

\(a< b< -2\Rightarrow a+b< -4\Rightarrow a+b+4< 0\Rightarrow-\left(a+b+4\right)>0\)

\(\Rightarrow\) hàm số đồng biến

b) đặc : \(f\left(x\right)=y=\dfrac{x+2}{x-1}\)

giả sử : \(a< b< 1\)

khi đó ta có : \(\dfrac{f\left(a\right)-f\left(b\right)}{a-b}=\dfrac{\dfrac{a+2}{a-1}-\dfrac{b+2}{b-1}}{a-b}\)

\(\dfrac{\dfrac{3b-3a}{\left(a-1\right)\left(b-1\right)}}{a-b}=\dfrac{3\left(b-a\right)}{\left(a-1\right)\left(b-1\right)\left(a-b\right)}\)

\(=\dfrac{-3}{\left(a-1\right)\left(b-1\right)}\)

\(a< b< 1\Rightarrow\left(a-1\right);\left(b-1\right)< 0\) \(\Rightarrow\left(a-1\right)\left(b-1\right)>0\)

\(\Rightarrow\dfrac{-3}{\left(a-1\right)\left(b-1\right)}< 0\)

\(\Rightarrow\) hàm số nghịch biến

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Từ đồ thị ta thấy hàm số xác định trên [-3;7]

+) Trên khoảng (-3; 1): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (-3; 1).

+) Trên khoảng (1; 3): đồ thị có dạng đi xuống từ trái sang phải nên hàm số này nghịch biến trên khoảng (1; 3).

+) Trên khoảng (3; 7): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (3; 7).

b) Xét hàm số \(y = 5{x^2}\) trên khoảng (2; 5).

Lấy \({x_1},{x_2} \in (2;5)\) là hai số tùy ý sao cho \({x_1} < {x_2}\).

Do \({x_1},{x_2} \in (2;5)\) và \({x_1} < {x_2}\) nên \(0 < {x_1} < {x_2}\), suy ra \({x_1}^2 < {x_2}^2\) hay \(5{x_1}^2 < 5{x_2}^2\)

Từ đây suy ra \(f({x_1}) < f({x_2})\)

Vậy hàm số đồng biến (tăng) trên khoảng (2; 5).

16 tháng 12 2023

thầy ơi thầy có thể giải giùm e đc ko ạ

12 tháng 4 2017

a) hệ số a=-2=>y luôn nghịch biến

b) a=1 >0 và -b/2a =-5 => (-5;+vc) y luôn đồng biến

c) hàm y có dạng y=a/(x+1)

a =-1 => y đồng biến (-vc;-1) nghich biến (-1;+vc

=>

(-3;-2) hàm y đồng biến

(2;3) hàm y đồng biến

26 tháng 4 2017

a) Hàm số \(y=-2x+3\) có a = -2 < 0 nên hàm số nghịch biến trên R.
b. Xét tỉ số \(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\left(x^2_1+10x_1+9\right)-\left(x^2_2+10x_2+9\right)}{x_1-x_2}\)
\(=\dfrac{\left(x_1-x_2\right)\left(x_1+x_2+10\right)}{x_1-x_2}=x_1+x_2+10\).
Với \(x_1;x_2\notin\left(-5;+\infty\right)\) thì \(x_1+x_2+10\ge0\) nên hàm số y đồng biến trên \(\left(-5;+\infty\right)\).
c) Xét tỉ số: \(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{-\dfrac{1}{x_1+1}+\dfrac{1}{x_2+1}}{x_1-x_2}=\dfrac{1}{\left(x_1+1\right)\left(x_2+1\right)}\)
Trên \(\left(-3;-2\right)\) thì \(\dfrac{1}{\left(x_1+1\right)\left(x_2+1\right)}< 0\) nên hàm số y nghịch biến trên \(\left(-3;-2\right)\).
Trên \(\left(2;3\right)\) thì \(\dfrac{1}{\left(x_1+1\right)\left(x_2+1\right)}>0\) nên hàm số y đồng biến trên \(\left(2;3\right)\).

28 tháng 5 2018

Đáp án A

10 tháng 10 2021

a) Đk:\(x\in R\)

TH1:Xét \(x\in\left(3;+\infty\right)\)

Lấy \(x_1;x_2\in\left(3;+\infty\right)\) thỏa mãn \(x_1\ne x_2\)

Xét \(I=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{2x_1^2-4x_1+3-\left(2x_2^2-4x_2+3\right)}{x_1-x_2}\)\(=2\left(x_1+x_2\right)-4\)

Do \(x_1;x_2\in\left(3;+\infty\right)\)\(\Rightarrow2\left(x_1+x_2\right)>12\Leftrightarrow2\left(x_1+x_2\right)-4>8>0\)

\(\Rightarrow I>0\)

Hàm đồng biến trên \(\left(3;+\infty\right)\)

TH2:Xét \(x\in\left(-10;1\right)\)

Lấy \(x_1;x_2\in\left(-10;1\right):x_1\ne x_2\)

Xét \(I=2\left(x_1+x_2\right)-4\)

Do \(x_1< 1;x_2< 1\Rightarrow2\left(x_1+x_2\right)< 4\Rightarrow I=2\left(x_1+x_2\right)-4< 0\)

Hàm nb trên khoảng \(\left(-10;1\right)\)

b)Làm tương tự,hàm nb trên \(\left(1;+\infty\right)\) và đb trên \(\left(-10;-2\right)\)

c)Đk: \(x\in R\backslash\left\{2\right\}\)

=>Hàm số xác định trên \(\left(-\infty;2\right)\)

Lấy \(x_1;x_2\in\left(-\infty;2\right):x_1\ne x_2\)

Xét \(I=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\dfrac{x_1}{x_1-2}-\dfrac{x_2}{x_2-2}}{x_1-x_2}=\dfrac{-2}{\left(x_1-2\right)\left(x_2-2\right)}\)

Do \(x_1;x_2< 2\Rightarrow\left(x_1-2\right)\left(x_2-2\right)>0\)

\(\Rightarrow I=-\dfrac{2}{\left(x_1-2\right)\left(x_2-2\right)}< 0\)

Hàm nb trên ​\(\left(-\infty;2\right)\)

d)\(I=\dfrac{1}{\left(x_1+1\right)\left(x_2+1\right)}\)

Hàm đb trên \(\left(-1;+\infty\right)\) ; \(\left(-3;-2\right)\)

e)TXĐ:D=R

Lấy \(x_1;x_2\in\left(0;+\infty\right):x_1< x_2\)

​​\(T=f\left(x_1\right)-f\left(x_2\right)=x_1^{2020}+x_1^2-3-x_2^{2020}-x_2^2+3=x_1^{2020}-x_2^{2020}+x_1^2-x_2^2\)

Do \(x_1< x_2\Rightarrow x_1^{2020}< x_2^{2020};x_1^2< x_2^2\)

\(\Rightarrow T=x_1^{2020}-x_2^{2020}+x_1^2-x_2^2< 0\)

Hàm đb trên \(\left(0;+\infty\right)\)

30 tháng 4 2023

B. Hàm số nghịch biến trên khoảng \(\left(-\infty;-1\right)\)

21 tháng 9 2018