Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ hằng đẳng thức của đề bài,dễ thấy:
\(2^3=\left(1+1\right)^3=1^3+3.1^2+3.1+1\)
\(3^3=\left(2+1\right)^3=2^3+3.2^2+3.2+1\)
\(4^3=\left(3+1\right)^3=3^3+3.3^2+3.3+1\)
\(..........\)
\(\left(n+1\right)^3=n^3+3n^2+3n+1\)
Cộng từng vế của n đẳng thức trên ta được:
\(2^3+3^3+4^3+....+\left(n+1\right)^3=\)\(\left(1^3+3.1^2+3.1+1\right)+\left(2^3+3.2^2+3.2+1\right)+...+\left(n^3+3n^2+3n+1\right)\)
\(\Rightarrow\left(n+1\right)^3=1^3+3\left(1^2+2^2+....+n^2\right)+3\left(1+2+...+n\right)+n\)
\(\Rightarrow3\left(1^2+2^2+...+n^2\right)=\left(n+1\right)^3-3\left(1+2+...+n\right)-n-1^3\)
Từ 1-> n có: n-1+1=n (số hạng)
=>\(1+2+....+n=\frac{n.\left(n+1\right)}{2}\Rightarrow3\left(1+2+..+n\right)=\frac{3n\left(n+1\right)}{2}\)
Do đó \(3\left(1^2+2^2+...+n^2\right)=\left(n+1\right)^3-\frac{3n\left(n+1\right)}{2}-\left(n+1\right)\)
\(=\left(n+1\right).\left(n+1\right)^2-\frac{3n}{2}.\left(n+1\right)-\left(n+1\right)\)
\(=\left(n+1\right).\left[\left(n+1\right)^2-\frac{3n}{2}-1\right]\)
\(=\left(n+1\right).\left[n^2+2n+1-\frac{3n}{2}-1\right]=\left(n+1\right).\left[n^2+2n-\frac{3n}{2}+1-1\right]\)
\(=\left(n+1\right)\left(n^2+\frac{n}{2}\right)=\left(n+1\right).\left(\frac{2n^2+n}{2}\right)\)
\(=\frac{\left(n+1\right).\left(2n^2+n\right)}{2}=\frac{\left(n+1\right).n.\left(2n+1\right)}{2}=\frac{1}{2}n\left(n+1\right)\left(2n+1\right)\)
\(\Rightarrow S=\frac{1}{2}n\left(n+1\right)\left(2n+1\right):3=\frac{1}{6}n\left(n+1\right)\left(2n+1\right)\)
Vậy \(S=\frac{1}{6}n\left(n+1\right)\left(2n+1\right)\)
\(S=1^3+2^3+3^3+...+n^3=\left(1+2+3+...+n\right)^2\)
\(=\left[\dfrac{n\left(n+1\right)}{2}\right]^2=\dfrac{n^2\cdot\left(n+1\right)^2}{4}\)
a: \(\left(2x^2+3y\right)^3\)
\(=8x^6+3\cdot4x^4\cdot3y+3\cdot2x^2\cdot9y^2+27y^3\)
\(=8x^6+36x^4y+54x^2y^2+27y^3\)
b: \(\left(2a^2b+\dfrac{1}{3}ab^2\right)^2\)
\(=4a^4b^2+2\cdot2a^2b\cdot\dfrac{1}{3}ab^2+\dfrac{1}{9}a^2b^4\)
\(=4a^4b^2+\dfrac{4}{3}a^3b^3+\dfrac{1}{9}a^2b^4\)
a/ \(\left(m+n\right)\left(m^3-mn+n^2\right)=m^3+n^3\)
b/ \(\left(a-b-c\right)^2-\left(a-b+c\right)^2=\left(a-b-c-a+b-c\right)\left(a-b-c+a-b+c\right)=-2c\left(2a-2b\right)=-4c\left(a-b\right)\)c/
\(\left(1+x+x^2\right)\left(1-x\right)\left(1+x\right)\left(1-x+x^2\right)=\left(\left(1+x+x^2\right)\left(1-x\right)\right)\left(\left(1-x+x^2\right)\left(1+x\right)\right)=\left(1-x^3\right)\left(1+x^3\right)=1-x^6\)
a) m3+n3
b) (a -b-c+a-b+c)(a-b-c-a+b-c)
= -4c(a-b)
c) (1-x3)(1+x3)
=1-x6
a) \(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{9}{4}=\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)
b) \(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2=\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)
a, \(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{2}^2\)
\(=\left(x-\dfrac{1}{2}-\dfrac{3}{2}\right)\left(x-\dfrac{1}{2}+\dfrac{3}{2}\right)\)
\(=\left(x-2\right)\left(x+1\right)\)
b, \(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\)
\(=x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{2}^2\)
\(=\left(x-\dfrac{1}{2}-\dfrac{3}{2}\right)\left(x-\dfrac{1}{2}+\dfrac{3}{2}\right)\)
\(=\left(x-2\right)\left(x+1\right)\)
Chúc bạn học tốt!!!