K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2015

a) TXĐ: D = [0; + \(\infty\))

\(y'=1+\frac{1}{2\sqrt{x}}\) > 0 với mọi x thuộc D

BBT:  x y' y 0 +oo + 0 +oo

Từ BBT => Hàm số đồng biến trên D ;

y đạt cực tiểu bằng 0 tại x = 0

Hàm số không có cực đại

b) TXĐ : D = = [0; \(\infty\))

\(y'=1-\frac{1}{2\sqrt{x}}\)

\(y'=0\) <=> \(2\sqrt{x}=1\) <=> \(x=\frac{1}{4}\)

x y' y 0 +oo + 0 +oo -1/4 1/4 0 -

Từ BBT: Hàm số đồng biến trên (1/4; + \(\infty\)); nghịch biến trên (0;1/4)

Hàm số đạt cực tiểu = -1/4 tại  x = 1/4

Hàm số không có cực đại

9 tháng 6 2017

3 tháng 11 2019

30 tháng 12 2017

29 tháng 7 2018

Chọn B

26 tháng 7 2017

22 tháng 12 2019

Đáp án đúng : B

20 tháng 9 2019

Phương pháp:

Quan sát bảng biến thiên và tìm điểm cực đại, cực tiểu và các giá trị cực đại, cực tiểu tương ứng.

Cách giải:

Số cách chọn là: 6.4 = 24 (cách). Quan sát bảng biến thiên ta thấy:

Hàm số đạt cực đại tại x = 2 và yCD  =  3 .

Hàm số đạt cực tiểu tại x = 2 và yCT  = 0 .

Vậy yCD  = 3 và yCT  =  0 .

Chọn: B

26 tháng 11 2018

Đáp án B

16 tháng 10 2019

Giá trị cực đại bằng y(-2)=3 giá trị cực tiểu bằng y(2)=0

Chọn đáp án D.