Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{n!+2}{\dfrac{n!}{\left(n-k\right)!}\cdot n!-k}+\dfrac{3003+10010+6435}{19448}\)
\(=\dfrac{n!+2}{n\left(n-1\right)\cdot...\cdot\left(n-k+1\right)\cdot n!-k}+1=\dfrac{n!+2+\dfrac{n!^2}{\left(n-k\right)!}-k}{\dfrac{n!^2}{\left(n-k\right)!}-k}\)
\(B=\dfrac{n!-\left(n-1\right)!}{\left(n-2\right)!}=\dfrac{\left(n-1\right)!\left(n-1\right)}{\left(n-2\right)!}=\left(n-1\right)^2=n^2-2n+1\)
a, Vì 3 chia hết cho x-1 => x-1 thuộc Ư(-3)=1,3,-1,-3
Ta có bảng
x-1 | 1 | 3 | -1 | -3 |
x | 2 | 4 | 0 | -2 |
Vậy x thuộc 2 ; 4;0;-2
b, Vì -4 chia hết cho 2x - 1 nên 2x-1 ϵ Ư(-4) = 1;2;4;-1;-2;-4
Ta có bảng :
2x-1 | 1 | 2 | 4 | -1 | -2 | -4 |
x | 1 | vô lý | vô lý | 0 | vô lý | vô lỹ |
Vây x= 1 và 0
Bài 2:
a: Vì AM<ÂN
nên điểm M nằm giữa hai điểm A và N
b: MN=AN-AM=5cm
c: PM=PA+AM=3+2=5cm
d: VìMP=MN
và P,M,N thẳng hàng
nên M là trung điểm của PN
a: =>n+5>0
=>n>-5
c: =>(n-3)(n+8)<0
=>-8<n<3
d: =>n^3<n^2
=>n^2(n-1)<0
=>n-1<0
=>n<1
\(\left\{{}\begin{matrix}\overrightarrow{PM}=\left(-1-a;2-b\right)\\3\overrightarrow{PN}=3\left(1-a;-b\right)=\left(3-3a;-3b\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-1-a=3-3a\\2-b=-3b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)