Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo nha bạn : http://lazi.vn/edu/exercise/xac-dinh-cac-hang-so-a-va-b-sao-cho-x4-ax-b-chia-het-cho-x2-4-x4-ax-bx-1-chia-het-cho-x2-1
x^4-3x^3+3x^2+ax+b x^2-3x+4 x^2-1 x^4-3x^3+4x^2 -x^2+ax+b -x^2+3x-4 (a-3)x+(b+4)
\(\Rightarrow x^4-3x^3+3x^2+ax+b=\left(x^2-3x-4\right)\left(x^2-1\right)+\left(a-3\right)x+\left(b-4\right)\)
\(\Rightarrow\left(a-3\right)x+\left(b+4\right)=0\Rightarrow a=3;b=-4\)
Cách bạn cool kid ko sai nhưng em thực hiện phép chia sai đề bài: \(x^2-3x+4?\)dẫn đến kết quả ko đúng
Thêm một cách nhé! :)
\(x^2-3x-4=x-4x+x-4=x\left(x-4\right)+\left(x-4\right)=\left(x-4\right)+\left(x+1\right)\)
Đa thức \(x^2-3x+4\) có hai nghiệm là 4 và -1
Để \(x^4-3x^3+3x^2+ax+b⋮x^2-3x-4\)
thì 4 và -1 là 2 nghiệm của \(x^4-3x^3+3x^2+ax+b\)
=> \(\hept{\begin{cases}4^4-3.4^3+3.4^2+a.4+b=0\\\left(-1\right)^4-3\left(-1\right)^3+3\left(-1\right)^2+a\left(-1\right)+b=0\end{cases}}\)
=> \(\hept{\begin{cases}4a+b=-112\\-a+b=-7\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-21\\b=-28\end{cases}}\)
Hệ số bất định đi :)
Đặt h(x) là thương trong phép chia f(x) cho g(x)
f(x) bậc 4 g(x) bậc 2 => h(x) bậc 2
=> h(x) có dạng x2 + cx + d
Khi đó f(x) ⋮ g(x) <=> f(x) = g(x).h(x)
<=> x4 + ax2 + b = ( x2 - x - 1 )( x2 + cx + d )
<=> x4 + ax2 + b = x4 + cx3 + dx2 - x3 - cx2 - dx - x2 - cx - d
<=> x4 + ax2 + b = x4 + ( c - 1 )x3 + ( d - c - 1 )x2 + ( -d - c )x - d
Đồng nhất hệ số ta có :
\(\hept{\begin{cases}c-1=0\\d-c-1=a\\-d-c=0\end{cases}};b=-d\)=> \(\hept{\begin{cases}c=1\\d=-1\\a=-3\end{cases}};b=1\)
Vậy a = -3 ; b = 1
a/ \(f\left(x\right)⋮\left(x^2-1\right)\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(-1\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2-1+a+b=0\\-2-1-a+b=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=-1\\-a+b=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=1\end{matrix}\right.\)
b/ Tương tự câu a, ta có \(\left\{{}\begin{matrix}f\left(3\right)=0\\f\left(-3\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}9a+3b=-90\\9a-3b=72\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=-27\end{matrix}\right.\)