Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ câu a xem lại đề bài
b/ \(\Delta'=\left(m+1\right)^2-m^2-1=m^2+2m+1-m^2-1=2m\)
Để PT có 2 no\(\Leftrightarrow2m\ge0\Leftrightarrow m\ge0\)
Theo Vi-ét có:
\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=m^2+1\end{matrix}\right.\)
Có \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\)
\(\Leftrightarrow x_1^2+x_2^2=4x_1x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=0\)
\(\Leftrightarrow\left(2m-2\right)^2-6\left(m^2+1\right)=0\)
\(\Leftrightarrow4m^2-8m+4-6m^2-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-2+\sqrt{3}\\m=-2-\sqrt{3}\end{matrix}\right.\) (loại)
9.3
\(pt:x^2+4x-1\)
\(\Delta=4^2-4.1.\left(-1\right)=20\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{-4+\sqrt{20}}{2}=-2+\sqrt{5}\\x_2=\frac{-4-\sqrt{20}}{2}=-2-\sqrt{5}\end{matrix}\right.\)
\(a.A=\left|x_1\right|+\left|x_2\right|=\left|-2+\sqrt{5}\right|+\left|-2-\sqrt{5}\right|=-2+\sqrt{5}+2+\sqrt{5}=2\sqrt{5}\)
b. Theo hệ thức Vi-et:
\(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1.x_2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x^2_2=16-2x_1x_2=16-2.1=14\\x_1^2x_2^2=1\end{matrix}\right.\)
\(B=x_1^2\left(x_1^2-7\right)+x_2^2\left(x_2^2-7\right)=x_1^4-7x_1^2+x_2^4-7x^2_2=\left(x_1^2\right)^2+\left(x_2^2\right)^2-7\left(x^2_1+x^2_2\right)=\left(x^2_1+x^2_2\right)^2-2x_1^2x_2^2-7\left(x_1^2+x_2^2\right)=14^2-2.1-7.14=96\)
9.1 Để phương trình có hai nghiệm phân biệt thì :
\(\Delta'=2^2-2=2>0\)
Theo hệ thức Viei, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2\end{matrix}\right.\)
a) \(S=\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1.x_2}{x_1+x_2}=\frac{2}{4}=\frac{1}{2}\)
b) \(Q=\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{x_1^2+x_2^2}{x_1.x_2}=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{4^2-2.2}{2}=6\)
c) \(K=\frac{1}{x_1^3}+\frac{1}{x_2^3}=\frac{\left(x_1+x_2\right)(\left(x_1+x_2\right)^2-3xy)}{\left(x_1.x_2\right)^3}=5\)
\(G=\frac{x_1}{x_2^2}+\frac{x_2}{x_1^2}=\frac{\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)}{\left(x_1x_2\right)^2}=10\)
Bài 5:
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta'=(m-1)^2-m^2\geq 0$
$\Leftrightarrow (m-1-m)(m-1+m)\geq 0$
$\Leftrightarrow 1-2m\geq 0\Leftrightarrow m\leq \frac{1}{2}(*)$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=m^2\end{matrix}\right.\)
Khi đó:
$(x_1-x_2)^2+6m=x_1-2x_2$
$\Leftrightarrow (x_1+x_2)^2-4x_1x_2+6m=(x_1+x_2)-3x_2$
$\Leftrightarrow 4(m-1)^2-4m^2+6m=2(m-1)-3x_2$
$\Leftrightarrow 4m-6=3x_2$
$\Leftrightarrow x_2=\frac{4}{3}m-2$
$x_1=2(m-1)-x_2=\frac{2}{3}m$
Suy ra:
$x_1x_2=m^2$
$\Leftrightarrow \frac{2}{3}m(\frac{4}{3}m-2)=m^2$
$\Leftrightarrow m(8m-12-9m)=0$
$\Leftrightarrow m(-m-12)=0$
$\Leftrightarrow m=0$ hoặc $m=-12$. Theo $(*)$ ta thấy 2 giá trị này đều thỏa mãn.
Bài 4:
Để pt có 2 nghiệm thì $\Delta'=4-2(2m^2-1)\geq 0$
$\Leftrightarrow m^2-1\leq 0\Leftrightarrow -1\leq m\leq 1$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=\frac{2m^2-1}{2}\end{matrix}\right.\)
Khi đó:
$2x_1^2+4mx_2+2m^2-1\geq 0$
$\Leftrightarrow (2x_1^2-4mx_1+2m^2-1)+4mx_1+4mx_2\geq 0$
$\Leftrightarrow 0+4m(x_1+x_2)\geq 0$
$\Leftrightarrow 4m. 2\geq 0$
$\Leftrightarrow m\geq 0$
Kết hợp với điều kiện $-1\leq m\leq 1$ suy ra $0\leq m\leq 1$ thì ycđb được thỏa mãn.
\(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=-7\end{matrix}\right.\)
\(A=\left(x_1+x_2\right)^2-2x_1x_2=3^2+2.7=23\)
\(B^2=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=3^2+4.7=37\Rightarrow B=\sqrt{37}\)
\(C=\frac{1}{x_1-1}+\frac{1}{x_2-1}=\frac{x_1+x_2-2}{x_1x_2-\left(x_1+x_2\right)+1}=\frac{3-2}{-7-3+1}=-\frac{1}{9}\)
\(D=10x_1x_2+3\left(x^2_1+x^2_2\right)=4x_1x_2+3\left(x_1+x_2\right)^2=-28+27=-1\)
\(E=\left(x_1+x_2\right)\left(x_1^2+x_2^2-3x_1x_2\right)=\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=90\)
\(F=\left(x_1^2+x_2^2\right)^2-2\left(x_1x_2\right)^2=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2\left(x_1x_2\right)^2=431\)
câu 1:
Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)
có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)
\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)
câu 2 mk k bik lm nha
1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)