Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có A thuộc (P) <=> \(y_A=x^2_A\Rightarrow y_A=4\)Vậy A(-2;4)
b, Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-2x-m^2+2m=0\)
\(\Delta=1-\left(-m^2+2m\right)=m^2-2m+1=\left(m-1\right)^2\ge0\)
Để pt có 2 nghiệm pb khi m khác 1
c, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-m^2+2m\end{cases}}\)
Vì x1 là nghiệm pt trên nên \(x_1^2=2x_1+m^2-2m\)
Thay vào ta được \(2x_1+m^2+2x_2=5m\)
\(\Leftrightarrow2\left(x_1+x_2\right)+m^2-5m=0\)
\(\Rightarrow m^2-5m+4=0\Leftrightarrow m=1\left(ktm\right);m=4\left(tm\right)\)
b) x2-2x-m2+2m=0
Δ'= (-1)2+m2-2m= (m-1)2>0 thì m≠1
KL:....
c) với m≠1 thì PT có 2 nghiệm PB
C1. \(x_1=1-\sqrt{\left(m-1\right)^2}=1-\left|m-1\right|\)
tt. tính x2
C2.
Theo Viets: \(S=x_1+x_2=2;P=x_1x_2=-m^2+2m\)
Ta có: \(x_1^2+2x_2=3m\Rightarrow x_1^2=3m-2x_2\)
Từ \(S=x_1+x_2=2\Rightarrow x_2=2-x_1\)Thay vào P ta có:
\(P=x_1\left(2-x_1\right)=-m^2+2m\)
⇔2x1-x12=-m2+2m
⇔2x1- (3m-2x2)=-m2+2m (Thay x12=3m-2x2)
⇔2x1-3m+2x2=-m2+2m⇔2(x1+x2)=-m2+5m ⇔2.2=-m2+5m ⇔m=4 (TM) và m=1(KTM)
Vậy với m=4 thì .....
1. PT hoành độ giao điểm:
x2−(2x−m2+9)=0⇔x2−2x+m2−9=0(∗)
Khi m=1
thì pt trên trở thành: x2−2x−8=0
⇔(x−4)(x+2)=0⇒x=4
hoặc x=−2
Khi x=4⇒y=x2=16
. Giao điểm thứ nhất là (4,16)
Khi x=−2⇒y=x2=4
. Giao điểm thứ hai là (−2,4)
2. (P)
và (d) cắt nhau tại 2 điểm phân biệt ⇔(∗)
có 2 nghiệm phân biệt (hai nghiệm ấy chính là giá trị của 2 hoành độ giao điểm)
⇔Δ′=1−(m2−9)>0⇔10>m2(1)
Hai giao điểm nằm về phía của trục tung, nghĩa là 2 hoành độ giao điểm x1,x2
trái dấu. Điều này xảy ra khi x1x2<0⇔m2−9<0(2)
Từ (1);(2)
suy ra m2−9<0⇔−3<m<3
giúp mình đi vẽ hộ cái hình
cho đường tròn tâm O bán kính r,điểm A cố định nằm ngoài đường tròn.kẻ 2 tiếp tuyến AM,AN.Đường thẳng D đi qua A cắt đường tròn O tại B,C với AB<AC.Chứng minh 5 điểm A,M,N,O,I thuộc đường tròn