Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chi tiết:
số chia: =\(3x^2+2x-1=\left(x+1\right)\left(3x-1\right)\)
Số bị chía: \(12x^3-7x^2+ax+b\)
Ta có "số bị chia bằng số chia nhân thương +số dư" chia hết=> số dư=0
Vậy: \(12x^3-7x^2+ax+b=\left[Thuong\right].\left(x+1\right)\left(3x-1\right)+0\)
do vậy a, b thủa mãn hệ : \(\left\{\begin{matrix}f\left(-1\right)=0\\f\left(\frac{1}{3}\right)=0\end{matrix}\right.\) giải ra có a,b
Bài 3:
\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4+ax^2+b}{x^2-3x+2}\)
\(=\dfrac{x^4-3x^3+2x^2+3x^3-9x^2+6x+\left(a+7\right)x^2-3x\left(a+7\right)+2\left(a+7\right)+x\left(-6+3a+7\right)+b-2a-14}{x^2-3x+2}\)
Để đây là phép chia hết thì 3a+1=0 và b-2a-14=0
=>a=-1/3; b=2a+14=-2/3+14=40/3
x^2+5 x^4+2x^3+10x+a x^2+2x-5 x^4+5x^2 2x^3-5x^2+10x+a 2x^3 +10x -5x^2+a -5x^2-25 a+25
Để x4+2x3+10x+a chia hết cho đa thức x2+5 thì
\(a+25=0\Leftrightarrow a=-25\)
Lời giải:
Áp dụng định lý Bê-du về phép chia đa thức
a)
Số dư của phép chia đa thức \(f(x)=2x^3-3x^2+x+a\) cho $x+2$ là:
\(f(-2)=2(-2)^3-3(-2)^2+(-2)+a=-30+a\)
Để phép chia là chia hết thì số dư bằng $0$
Hay $-30+a=0$ suy ra $a=30$
b) Số dư của phép chia đa thức $f(x)=2x^2+ax+1$ cho $x-3$ là:
\(f(3)=2.3^2+3a+1=19+3a\)
Số dư bằng $4$ \(\Leftrightarrow 19+3a=4\Rightarrow a=-5\)
Cho mình làm lại :
Để phép chia hết thì \(xa-3x+b+2=0\)
Đặt \(x=0\Rightarrow b+2=0\)
\(\Rightarrow b=-2\)
Đặt \(x=1\Rightarrow a-3+2+\left(-2\right)=0\)
\(\Rightarrow a=3\)
Vậy ...
( ͡° ͜ʖ ͡°)
( ͡° ͜_ ͡°) x^4 - 3x^3 + 2x^2 - ax + b x^2 - x - 2 x^2 - 2x +1 x^4 - x^3 - 2x^2 -2x^3 + 3x^2 - ax + b -2x^3 + 2x^2 +4x x^2 -(a-4)x+b x^2 - x - 2 (a-3)x+(b+2)
Để phép chia hết thì \(\left(a-3\right)x+\left(b+2\right)=xa-3x+b+2=0\)