Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng dẫn :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)
Thay vào:\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-zx=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)
Tương tự thay vào mà quy đồng
\(\frac{3x+1}{\left(x+1\right)^3}=\frac{a}{\left(x+1\right)^3}+\frac{b}{\left(x+1\right)^2}\Leftrightarrow\frac{3x+1}{\left(x+1\right)^3}=\frac{a}{\left(x+1\right)^3}+\frac{b.\left(x+1\right)}{\left(x+1\right)^3}\)
\(\Rightarrow\frac{3x+1}{\left(x+1\right)^3}-\frac{a+b.\left(x+1\right)}{\left(x+1\right)^3}=0\)\(\Rightarrow3x+1=a+b.\left(x+1\right)\)
Mà 3x+1=3.(x+1) -2 \(\Rightarrow b=3,a=-2\)
1)\(A=\frac{b\left(2a\left(a+5b\right)+\left(a+5b\right)\right)}{a-3b}.\frac{a\left(a-3b\right)}{ab\left(a+5b\right)}=\frac{b\left(a+5b\right)\left(2a+1\right).a\left(a-3b\right)}{\left(a-3b\right).ab\left(a+5b\right)}\)
\(A=2a+1\)=>lẻ với mọi a thuộc z=> dpcm
2) từ: x+y+z=1=> xy+z=xy+1-x-y=x(y-1)-(y-1)=(y-1)(x-1)
tường tự: ta có tử của Q=(x-1)^2.(y-1)^2.(z-1)^2=[(x-1)(y-1)(z-1)]^2=[-(z+y).-(x+y).-(x+y)]^2=Mẫu=> Q=1
3) kiểm tra lại xem đề đã chuẩn chưa
Ta có:\(\frac{a}{\left(x+1\right)^3}+\frac{b}{\left(x+1\right)^2}=\frac{a+bx+b}{\left(x+1\right)^3}\)
Vì \(\frac{a+bx+b}{\left(x+1\right)^3}\) và \(\frac{3x+1}{\left(x+1\right)^3}\) đều có chung tử
Suy ra a+bx+b=3x+1
a) Biến đổi vế phải, ta có :\(\frac{-3x\left(x-y\right)}{y^2-x^2}=\frac{3x\left(x-y\right)}{x^2-y^2}=\frac{3x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\frac{3x}{x+y}\) = vế trái \(\Rightarrowđpcm\)
c)Biến đổi vế phải ta có: \(\frac{3a\left(x+y\right)^2}{9a^2\left(x+y\right)}=\frac{x+y}{3a}=vt\Rightarrowđpcm\)
Ta có:
\(\frac{3x+1}{\left(x+1\right)^3}=\frac{a}{\left(x+1\right)^3}+\frac{b}{\left(x+1\right)^2}=\frac{bx+b+a}{\left(x+1\right)^3}\)
Đồng nhất thức 2 vế được: \(\hept{\begin{cases}b=3\\a+b=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=-2\\b=3\end{cases}}\)
\(e ) Để \) \(M\)\(\in\)\(Z \) \(thì\) \(1 \)\(⋮\)\(x +3\)
\(\Leftrightarrow\)\(x + 3 \)\(\in\)\(Ư\)\((1)\)\(= \) { \(\pm\)\(1 \) }
\(Lập\) \(bảng :\)
\(x +3\) | \(1\) | \(- 1\) |
\(x\) | \(-2\) | \(- 4\) |
\(Vậy : Để \) \(M\)\(\in\)\(Z\) \(thì\) \(x\)\(\in\){ \(- 4 ; - 2\) }
e) Để M \(\in\)Z <=> \(\frac{1}{x+3}\in Z\)
<=> 1 \(⋮\)x + 3 <=> x + 3 \(\in\)Ư(1) = {1; -1}
Lập bảng:
x + 3 | 1 | -1 |
x | -2 | -4 |
Vậy ....
f) Ta có: M > 0
=> \(\frac{1}{x+3}\) > 0
Do 1 > 0 => x + 3 > 0
=> x > -3
Vậy để M > 0 khi x > -3 ; x \(\ne\)3 và x \(\ne\)-3/2
Đáp án :
1- C
2-A
3-B
4-D
5-
6-D
7-A
8-B
9-
10-D
11-
12-B
13-B
14-C
15-
16-D
17-
18-D
19-D
20-D
Câu 1:Trong các pt sau đây, pt nào là pt bậc nhất một ẩn
A.x-1=x+2 B.(x-1)(x+2)=0 C.ax+b=0 D.2x+1=3x+5
Câu2: x=-2 là nghiệm của pt nào ?
A.3x-1=x-5 B.2x-1=x+3 C.x-3=x-2 D.3x+5=-x-2
Câu 3: x-4 là nghiệm của pt
A.3x-1=x-5 B.2x-1=x+3 C.x-3=x-2 D.3x+5=-x-2
Câu 4: Pt x+9=9+x có nghiệm là
A.S=R B.S=9 C.S rỗng D. S thuộc R
Câu 5: cho 2pt: x(x-1)=0(1) và 3x-3=0 (2)
A.(1) tương đương (2) B.(1) là hệ quả của pt (2)
C.(2) là hệ quả của pt (1) D. Cả 3 sai
Câu 6: Pt x2x2=-4 có nghiệm là
A. Một nghiệm x=2 B. Có hai nghiệm x=-2;x=2
C.Mộe nghiệm x=-2 D. Vô nghiệm
Câu 7: Chọn kết quả đúng
A. x2=3xx2=3x <=> x(x-3) =0 B.(x−1)2−25(x−1)2−25= 0 <=> x=6
C. x2x2 =9 <=> x=3 D.x2x2 =36<=> x=-6
Câu 8: Cho biết 2x-4=0. Tính 3x-4=
A. 0 B. 2 C. 17 D. 11
Câu 9: Pt (2x-3)(3x-2)=6x(x-50)+44 có tập nghiệm
A. S={2}{2} B. S={2;−3}{2;−3} C. S={2;13}{2;13} D. S={2;0;3}{2;0;3}
Câu 10: Pt 3x-5x+5=-8 có nghiệm là
A. x=-2323 B. x=2323 C. x=4 D. Kết quả khác
Câu 11: Giá trị của b để pt 3x+6=0 có nghiệm là x=-2
A.4 B. 5 C. 6 D. Kết quả khác
Câu 12: Pt 2x+k=x-1 nhận x=2 là nghiệm khi
A. k=3 B. k=-3 C. k=0 D.k=1
Câu 13: Pt m(x-1)=5-(m-1)x vô nghiệm nếu
A. m=1414 B. m=1212 C.m=3434 D. m=1
Câu 14: Pt x2x2 -4x+3=0 có nghiệm là
A. {1;2}{1;2} B. {2;3}{2;3} C. {1;3}{1;3} D. {2;4}{2;4}
Câu 15: Pt x2x2 -4x+4=9(x−2)2(x−2)2 có nghiệm là
A. {2}{2} B. {−2;2}{−2;2} C. {−2}{−2} D. Kết quả khác
Câu 16: Pt 1x+2+3=3−xx−21x+2+3=3−xx−2 có nghiệm
A.1 B. 2 C. 3 D. Vô nghiệm
Câu 17: Pt x+2x−2−2x(x−2)=1xx+2x−2−2x(x−2)=1x có nghiệm là
A. {−1}{−1} B. {−1;3}{−1;3} C. {−1;4}{−1;4} D. S=R
Câu 18: Pt x2(x−3)+x2(x+1)=2x(x+1)(x+3)x2(x−3)+x2(x+1)=2x(x+1)(x+3) có nghiệm là
A. -1 B. 1 C. 2 D. Kết quả khác
Câu 19: Pt x2+2xx2+1−2x=0x2+2xx2+1−2x=0 có nghiệm là
A. -2 B.3 C. -2 và 3 D. kết quả khác
Câu 20: ĐKXĐ của Pt 3x+2x+2+2x−11x2−4−32−x3x+2x+2+2x−11x2−4−32−x là
A. x−23−23; x≠112≠112 B. x≠≠2 C. x>0 D. x≠≠ 2 và x≠≠ -2