Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(\frac{3y}{4}=\frac{3y}{4}.1=\frac{3y}{4}.\frac{2x}{2x}=\frac{6xy}{8x}\) ( đpcm )
b, Ta có : \(6x^2y=6x^2y\)
=> \(3x^2.2y=\left(-3x^2\right).\left(-2y\right)\)
=> \(\frac{-3x^2}{2y}=\frac{3x^2}{-2y}\) ( đpcm )
c, Ta có : \(6x-6y=6x-6y\)
=> \(6x-6y=-6y+6x\)
=> \(6\left(x-y\right)=-6\left(y-x\right)\)
=> \(2\left(x-y\right).3=-2\left(y-x\right).3\)
=> \(\frac{2\left(x-y\right)}{3\left(y-x\right)}=\frac{-2}{3}\) ( đpcm )
Lời giải:
a) \(\frac{x^2-16}{4x-x^2}=\frac{(x-4)(x+4)}{x(4-x)}=\frac{x+4}{-x}\)
b) \(\frac{5(x-y)-3(y-x)}{10(x-y)}=\frac{5(x-y)+3(x-y)}{10(x-y)}=\frac{8(x-y)}{10(x-y)}=\frac{8}{10}=\frac{4}{5}\)
c)
\(\frac{(x+y)^2-z^2}{x+y+z}=\frac{(x+y-z)(x+y+z)}{x+y+z}=x+y-z\)
d)
Biểu thức không rút gọn được
e)
\(\frac{a^3+b^3+c^3}{a^2+b^2+c^2-ab-bc-ac}=\frac{(a+b)^3-3ab(a+b)+c^3}{a^2+b^2+c^2-ab-bc-ac}=\frac{(a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b)}{a^2+b^2+c^2-ab-bc-ac}\)
\(=\frac{(a+b+c)(a^2+b^2+c^2-ac-bc+2ab)-3ab(a+b+c)+3abc}{a^2+b^2+c^2-ab-bc-ac}\)
\(=\frac{(a+b+c)(a^2+b^2+c^2-ab-bc-ac)+3abc}{a^2+b^2+c^2-ab-bc-ac}=a+b+c+\frac{3abc}{a^2+b^2+c^2-ab-bc-ac}\)
1)\(A=\frac{b\left(2a\left(a+5b\right)+\left(a+5b\right)\right)}{a-3b}.\frac{a\left(a-3b\right)}{ab\left(a+5b\right)}=\frac{b\left(a+5b\right)\left(2a+1\right).a\left(a-3b\right)}{\left(a-3b\right).ab\left(a+5b\right)}\)
\(A=2a+1\)=>lẻ với mọi a thuộc z=> dpcm
2) từ: x+y+z=1=> xy+z=xy+1-x-y=x(y-1)-(y-1)=(y-1)(x-1)
tường tự: ta có tử của Q=(x-1)^2.(y-1)^2.(z-1)^2=[(x-1)(y-1)(z-1)]^2=[-(z+y).-(x+y).-(x+y)]^2=Mẫu=> Q=1
3) kiểm tra lại xem đề đã chuẩn chưa
Với đk trên ta có:
P = \(\frac{2}{x}-\left(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\right).\frac{x+y}{x^2+xy+y^2}\)
\(=\frac{2}{x}-\left(\frac{x}{x+y}-\frac{\left(x-y\right)\left(x+y\right)}{xy}-\frac{y}{x+y}\right).\frac{x+y}{x^2+xy+y^2}\)
\(=\frac{2}{x}-\left(\frac{x-y}{x+y}-\frac{\left(x-y\right)\left(x+y\right)}{xy}\right).\frac{x+y}{x^2+xy+y^2}\)
\(=\frac{2}{x}-\frac{x-y}{xy}.\left(xy-\left(x+y\right)^2\right).\frac{1}{x^2+xy+y^2}\)
\(=\frac{2}{x}+\frac{x-y}{xy}\)
\(=\frac{x+y}{xy}\)
Hướng dẫn :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)
Thay vào:\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-zx=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)
Tương tự thay vào mà quy đồng
\(\left(xy+\frac{1}{xy}\right)^2-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(xy+\frac{1}{xy}\right)\)
\(=\left(xy+\frac{1}{xy}\right)\left[\left(xy+\frac{1}{xy}\right)-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\right]\)
\(=\left(xy+\frac{1}{xy}\right)\left(xy+\frac{1}{xy}-xy-\frac{x}{y}-\frac{y}{x}-\frac{1}{xy}\right)\)
\(=\left(xy+\frac{1}{xy}\right)\left(-\frac{x}{y}-\frac{y}{x}\right)\)
\(=-\left(xy+\frac{1}{xy}\right)\left(\frac{x}{y}+\frac{y}{x}\right)=-\left(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\right)\)
\(-\left(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(=4\)
Vậy giá trị bt ko phụ thuộc vào biến
bn có thể giải thích rõ hơn tại sao lại bằng 4 được không? Dù gì thì cx cảm ơn bn đã tl câu hỏi của mk
\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)
\(\Leftrightarrow\frac{x^2-yz}{x-xyz}=\frac{y^2-xz}{y-xyz}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x^2-yz}{x-xyz}=\frac{y^2-xz}{y-xyz}=\frac{x^2-y^2+xz-yz}{x-xyz-y+xyz}=\frac{\left(x-y\right)\left(x+y\right)+z\left(x-y\right)}{x-y}=\frac{\left(x-y\right)\left(x+y+z\right)}{x-y}=x+y+z\)
\(\Rightarrow\frac{x^2-yz}{x-xyz}=x+y+z\)
\(\Rightarrow x^2-yz=\left(x-xyz\right)\left(x+y+z\right)\)
\(\Rightarrow x^2-yz=x\left(x-xyz\right)+y\left(x-xyz\right)+z\left(x-xyz\right)\)
\(\Rightarrow x^2-yz=x^2-x^2yz+xy-xy^2z+xz-xyz^2\)
\(\Rightarrow-yz-xy-xz=-x^2yz-xy^2z-xyz^2\)
\(\Rightarrow-\left(yz+xy+xz\right)=-\left(x^2yz+xy^2z+xyz^2\right)\)
\(\Rightarrow yz+xy+xz=x^2yz+xy^2z+xyz^2\)
\(\Rightarrow yz+xy+xz=xyz\left(x+y+z\right)\)
Vậy nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\) thì \(yz+xy+xz=xyz\left(x+y+z\right)\)
a) Biến đổi vế phải, ta có :\(\frac{-3x\left(x-y\right)}{y^2-x^2}=\frac{3x\left(x-y\right)}{x^2-y^2}=\frac{3x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\frac{3x}{x+y}\) = vế trái \(\Rightarrowđpcm\)
c)Biến đổi vế phải ta có: \(\frac{3a\left(x+y\right)^2}{9a^2\left(x+y\right)}=\frac{x+y}{3a}=vt\Rightarrowđpcm\)