K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2015

Gọi thương của phép chia đa thức \(f\left(x\right)\)cho \(x-1\)và cho \(x+2\), theo thứ tự là \(A\left(x\right),B\left(x\right)\)và dư theo thứ tự là  \(4\) và  \(1\)

Ta có:

\(f\left(x\right)=\left(x-1\right).A\left(x\right)+4\)

nên \(\left(x+2\right)f\left(x\right)=\left(x-1\right)\left(x+2\right).A\left(x\right)+4\left(x+2\right)\) \(\left(1\right)\)

\(f\left(x\right)=\left(x+2\right).B\left(x\right)+1\) 

nên \(\left(x-1\right)f\left(x\right)=\left(x+2\right)\left(x-1\right).B\left(x\right)+1\left(x-1\right)\) \(\left(2\right)\)

Lấy \(\left(1\right)\)trừ \(\left(2\right)\) vế theo vế, ta có:

\(\left[\left(x+2\right)-\left(x-1\right)\right]f\left(x\right)=\left(x-1\right)\left(x+2\right)\left[A\left(x\right)-B\left(x\right)+4\left(x+2\right)-1\left(x-1\right)\right]\)

\(\Leftrightarrow3f\left(x\right)=\left(x-1\right)\left(x+2\right)\left[A\left(x\right)-B\left(x\right)\right]+3x+9\)

Do đó: \(f\left(x\right)=\left(x-1\right)\left(x+2\right)\frac{A\left(x\right)-B\left(x\right)}{3}+\left(x+3\right)\)

\(\Leftrightarrow f\left(x\right)=5x^2\left(x-1\right)\left(x+2\right)+\left(x+3\right)\)

 

trong đó, bậc của \(x+3\) nhỏ hơn bậc của \(\left(x-1\right)\left(x+2\right)\)

Vậy, dư của phép chia \(f\left(x\right)\) cho \(\left(x-1\right)\left(x+2\right)\)là  \(x+3\)

 

24 tháng 11 2022

Gọi thương của phép chia đa thức f(x)f(x)cho x−1x−1và cho x+2x+2, theo thứ tự là A(x),B(x)A(x),B(x)và dư theo thứ tự là  44 và  11

Ta có:

f(x)=(x−1).A(x)+4f(x)=(x−1).A(x)+4

nên (x+2)f(x)=(x−1)(x+2).A(x)+4(x+2)(x+2)f(x)=(x−1)(x+2).A(x)+4(x+2) (1)(1)

f(x)=(x+2).B(x)+1f(x)=(x+2).B(x)+1 

nên (x−1)f(x)=(x+2)(x−1).B(x)+1(x−1)(x−1)f(x)=(x+2)(x−1).B(x)+1(x−1) (2)(2)

Lấy (1)(1)trừ (2)(2) vế theo vế, ta có:

[(x+2)−(x−1)]f(x)=(x−1)(x+2)[A(x)−B(x)+4(x+2)−1(x−1)][(x+2)−(x−1)]f(x)=(x−1)(x+2)[A(x)−B(x)+4(x+2)−1(x−1)]

⇔3f(x)=(x−1)(x+2)[A(x)−B(x)]+3x+9⇔3f(x)=(x−1)(x+2)[A(x)−B(x)]+3x+9

Do đó: f(x)=(x−1)(x+2)A(x)−B(x)3+(x+3)f(x)=(x−1)(x+2)A(x)−B(x)3+(x+3)

⇔f(x)=5x2(x−1)(x+2)+(x+3)

8 tháng 2 2018

Gọi thương của phép chia  f(x)  cho  x-2  là  A(x);      cho   x-3   là   B(x)

Ta có:    f(x)   =   (x-2).A(x)   +   5

             f(x)   =  (x-3).B(x)  +  7

Ap dụng định lý Bơ-du ta có:

           f(2) = 5

           f(3) = 7

Gọi dư của phép chia  f(x) cho (x-2)(x-3) là  ax+b

Ta có:

            f(x)  =  (x-2)(x-3).(x2-1)  +  ax + b

\(\Rightarrow\)f(2) = 2a + b  =  5

        f(3)  =  3a  +  b  =7

\(\Rightarrow\)a = 2;    b = 1

vậy  f(x) = (x-2)(x-3)(x2 - 1) + 2x + 1

             = x4 - 5x3 + 5x2 + 7x - 5

  

        

7 tháng 12 2018

cho mình hỏi tại sao dư của f(x) cho (x-2)(x-3) lại phải là ax+b mà không phải cái khác vậy bạn

7 tháng 2 2018

Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo bài tương tự tại đây nhé.

29 tháng 3 2020

f(x)= (x-3). Q(x)+2 moi X 
f(x)=(x+4).H(x)+9 moi X 
=>f(3)= 2 
f( -4)= 9 
f(x)= (x^2+x-12).(x^2+3)+ ax +b 
=(x-3)(x+4). (x^2+3) +ax+b 
=>f(3)= 3a+b=2 
f(-4)=b -4a=9 
=>a= -1; b=5 
=> f(x)=(x^2+x-12)(x^2+3)-x+5 
= x^4+x^3-9x^2+2x-31

# mui #

1 tháng 11 2024

Gọi thương của P(x) khi chi cho (x-2), (x-3) lần lượt là A(x),B(x)               =>P(x)=(x-2).A(x)+5  (1)      và P(x)=(x-3).B(x)=7 (2)                               Gọi thương của P(x) khi chia cho (x-2).(x-3) là C(x) và dư là R(x)           Ta có : (x-2)(x-3) có bậc là 2 =>  R(x) có bậc là 1 => R(x) có dạng ax+b  (a,b là số nguyên )                                                             =>R(x)=(x-2)(x-3).C(x)+ax+b  (3)                                                         thay x=2 vào (1) và (3) ta có: P(x)=2a+b=5                                            thay x=3 vào (2) và (3) ta có: P(x)=3a+b=7                                         => a=2,b=1 =>R(x)=2x+1                                                                      Vậy dư của P(x) khi chia cho (x-2)(x-3) là 2x+1