Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo đề bài, ta có:
\(x^4+x^3+2x^2-7x-5=\left(x^2+2x+5\right)\left(x^2+bx+c\right)\)
\(\Rightarrow x^4+x^3+2x^2-7x-5=x^4+\left(b+2\right)x^3+\left(2b+c+5\right)x^2+\left(5b+2c\right)x+5c\)
Suy ra: \(\left\{\begin{matrix}b+2=1\\2b+c+5=2\\5b+2c=-7\\5c=-5\end{matrix}\right.\) \(\Rightarrow\left\{\begin{matrix}b=-1\\c=-1\end{matrix}\right.\)
b) Theo đề bài, ta có:
\(x^4-2x^3+2x^2-2x+a=\left(x^2-2x+1\right)\left(x^2+bx+c\right)\)
\(\Rightarrow x^4-2x^3+2x^2-2x+a=x^4+\left(b-2\right)x^3+\left(c-2b+1\right)x^2+\left(b-2c\right)x+c\)
Suy ra: \(\left\{\begin{matrix}b-2=-2\\c-2b+1=2\\b-2c=-2\\c=a\end{matrix}\right.\) \(\Rightarrow\left\{\begin{matrix}a=1\\b=0\\c=1\end{matrix}\right.\)
a) \(=\left(x^2-6\right)\left(x^2-1\right)=\left(x^2-6\right)\left(x-1\right)\left(x+1\right)\)
b) \(=\left(x^2-1\right)\left(x^2+3\right)=\left(x-1\right)\left(x+1\right)\left(x^2+3\right)\)
c) \(=x^2\left(x-1\right)-x\left(x-1\right)+4\left(x-1\right)=\left(x-1\right)\left(x^2-x+4\right)\)
bài này dùng pp hệ số bất định
p.trình trên ko có nghiệm nguyên nên sẽ có dạng (x^2+ax+b)(x^2+cx+d).
Phá ngoặc ta đc x^4+(a+c)x^3+(ac+b+d)x^2+(ad+bc)x+bd.
Kết hợp vs đề bài ta có hệ đ/k sau: a+c = -1;ac+b+d = 2;ad+bc = -11;bd= -5. (1)
Xét vs b = -1;d=5 thì (1) trở thành : a+c =-1; (2)
ac= -2;
5a-c = -11 (3)
Từ (2) và (3) ta có 6a = -12 =>a = -2
=>c = 1
=> a = -2; b = -1; c = 1; d = 5
Vậy đa thức trên khi phân tích thành nhân tử sẽ bằng (x^2 - 2x - 1)(x^2 + x + 5).
Vậy nha.
a, x^2 + 5x +4
= x^2 + 1x + 4x + 4
= (x^2 + 1x) + (4x + 4)
= x ( x + 1 ) + 4 ( x + 1 )
= (x + 1) (x + 4)
b, x^2 - 6x + 5
= x^2 - 1x - 5x + 5
= (x^2 - 1x) - (5x - 5)
= x (x - 1) - 5 (x - 1)
= (x - 1) (x - 5)
c, x^2 + 7x + 12
= x^2 + 3x + 4x + 12
= (x^2 + 3x) + (4x + 12)
= x (x + 3) + 4 (x + 3)
= (x + 3) (x + 4)
d, 2x^2 - 5x + 3
= 2^x2 - 2x - 3x + 3
= 2x (x - 1) - 3 (x - 1)
= (x-1) (2x - 3)
e, 7x - 3x^2 - 4
= 3x + 4x - 3x^2 - 4
= (3x - 3x^2) + (4x - 4)
= 3x (1 - x) + 4 (x - 1)
= 3x (1-x) - 4 (1 - x)
= (1 - x) (3x - 4)
f, x^2 - 10x + 16
= x^2 - 2x - 8x + 16
= (x^2 - 2x) - (8x - 16)
= x (x - 2) - 8 (x - 2)
= (x - 2) (x - 8)
a, (x+1)(x+4)
b,(x-5)(x-1)
c,(x+3)(x+4)
d,(2x-3)(x-1)
e,(-3x+4)(x-1)
f, (x-8)(x-2)
Bài 1:
b: \(3x-6=x^2-16\)
\(\Leftrightarrow x^2-3x-10=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)