K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2017

a) Theo đề bài, ta có:

\(x^4+x^3+2x^2-7x-5=\left(x^2+2x+5\right)\left(x^2+bx+c\right)\)

\(\Rightarrow x^4+x^3+2x^2-7x-5=x^4+\left(b+2\right)x^3+\left(2b+c+5\right)x^2+\left(5b+2c\right)x+5c\)

Suy ra: \(\left\{\begin{matrix}b+2=1\\2b+c+5=2\\5b+2c=-7\\5c=-5\end{matrix}\right.\) \(\Rightarrow\left\{\begin{matrix}b=-1\\c=-1\end{matrix}\right.\)

b) Theo đề bài, ta có:

\(x^4-2x^3+2x^2-2x+a=\left(x^2-2x+1\right)\left(x^2+bx+c\right)\)

\(\Rightarrow x^4-2x^3+2x^2-2x+a=x^4+\left(b-2\right)x^3+\left(c-2b+1\right)x^2+\left(b-2c\right)x+c\)

Suy ra: \(\left\{\begin{matrix}b-2=-2\\c-2b+1=2\\b-2c=-2\\c=a\end{matrix}\right.\) \(\Rightarrow\left\{\begin{matrix}a=1\\b=0\\c=1\end{matrix}\right.\)

30 tháng 9 2021

a) \(=\left(x^2-6\right)\left(x^2-1\right)=\left(x^2-6\right)\left(x-1\right)\left(x+1\right)\)

b) \(=\left(x^2-1\right)\left(x^2+3\right)=\left(x-1\right)\left(x+1\right)\left(x^2+3\right)\)

c) \(=x^2\left(x-1\right)-x\left(x-1\right)+4\left(x-1\right)=\left(x-1\right)\left(x^2-x+4\right)\)

30 tháng 9 2021

cảm ơn

 

14 tháng 4 2018

bài này dùng pp hệ số bất định 

p.trình trên ko có nghiệm nguyên nên sẽ có dạng (x^2+ax+b)(x^2+cx+d).

Phá ngoặc ta đc x^4+(a+c)x^3+(ac+b+d)x^2+(ad+bc)x+bd.

Kết hợp vs đề bài ta có hệ đ/k sau: a+c = -1;ac+b+d = 2;ad+bc = -11;bd= -5. (1)

Xét vs b = -1;d=5 thì (1) trở thành : a+c =-1;                                                  (2)

                                                   ac= -2;

                                                   5a-c = -11                                                (3)

Từ (2) và (3) ta có 6a = -12 =>a = -2

                                       =>c = 1

=> a = -2; b = -1; c = 1; d = 5

Vậy đa thức trên khi phân tích thành nhân tử sẽ bằng (x^2 - 2x - 1)(x^2 + x + 5).

Vậy nha.

14 tháng 4 2018

Mình chịu thôi với lại mình mới học lớp 5

29 tháng 9 2016

a, x^2 + 5x +4

= x^2 + 1x + 4x + 4

= (x^2 + 1x) + (4x + 4)

= x ( x + 1 ) + 4 ( x + 1 )

= (x + 1) (x + 4)

b, x^2 - 6x + 5

= x^2 - 1x - 5x + 5

= (x^2 - 1x) - (5x - 5)

= x (x - 1) - 5 (x - 1)

= (x - 1) (x - 5)

c, x^2 + 7x + 12

= x^2 + 3x + 4x + 12 

= (x^2 + 3x) + (4x + 12)

= x (x + 3) + 4 (x + 3)

= (x + 3) (x + 4)

d, 2x^2 - 5x + 3

= 2^x2 - 2x - 3x + 3

= 2x (x - 1) - 3 (x - 1)

= (x-1) (2x - 3)

e, 7x  - 3x^2 - 4

= 3x + 4x - 3x^2 - 4

= (3x - 3x^2) + (4x - 4)

= 3x (1 - x) + 4 (x - 1)

= 3x (1-x) - 4 (1 - x)

= (1 - x) (3x - 4)

f, x^2 - 10x + 16

= x^2 - 2x - 8x + 16

= (x^2 - 2x) - (8x - 16)

= x (x - 2) - 8 (x - 2)

= (x - 2) (x - 8)

29 tháng 9 2016

a, (x+1)(x+4)

b,(x-5)(x-1)

c,(x+3)(x+4)

d,(2x-3)(x-1)

e,(-3x+4)(x-1)

f, (x-8)(x-2)

29 tháng 10 2021

Bài 1: 

b: \(3x-6=x^2-16\)

\(\Leftrightarrow x^2-3x-10=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)