Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm ơn giúp mình bài toán hình phần d với cảm ơn nhiều( hình lớp 7 đó)
\(P=\left(x^2+mx+1\right)^2\) hoặc \(P=\left(x^2+mx-1\right)\)do hệ số \(x^4\)là 1; hệ số tự do là 1
+Với \(P=\left(x^2+mx+1\right)^2=x^4+2mx^3+\left(m^2+2\right)x^2+2mx+1=x^4+ax^3+bx^2-8x+1\)\(\Rightarrow2m=-8;a=2m;b=m^2+2\)
\(\Rightarrow m=-4;a=-8;b=18\)
+Với
\(P=\left(x^2+mx-1\right)^2=x^4+2mx^3+\left(m^2-2\right)x^2-2mx+1\)
Làm tương tự được m = 4; a = 8; b = 14
a/ Giả sử \(x^4+2x^3+3x^2+ax+b=\left(x^2+cx+d\right)^2\)
\(\Leftrightarrow x^4+2x^3+3x^2+ax+b=x^4+c^2x^2+d^2+2x^3c+2xcd+2dx^2\)
\(\Leftrightarrow x^3\left(2-2c\right)+x^2\left(3-c^2-2d\right)+x\left(a-2cd\right)+\left(b-d^2\right)=0\)
Áp dụng hệ số bất định, ta có :
\(\begin{cases}2-2c=0\\3-c^2-2d=0\\a-2cd=0\\b-d^2=0\end{cases}\) \(\Leftrightarrow\begin{cases}a=2\\b=1\\c=1\\d=1\end{cases}\)
Vậy : \(x^4+2x^3+3x^2+2x+1=\left(x^2+x+1\right)^2\)
b/ Tương tự
Ta có \(x^4+ax^3+bx^2-8x+4=\left(x^2+cx+d\right)^2\).
Hệ số tự do của \(\left(x^2+cx+d\right)^2\) là \(d^2\).
Vì vậy \(d^2=4\Leftrightarrow d=\pm2\).
Với \(d=2\) ta có:
\(x^4+ax^3+bx^2-8x+4=\left(x^2+cx+2\right)^2\).
Áp dụng hằng đẳng thức \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\) ta có:
\(\left(x^2+cx+2\right)^2=x^4+c^2x^2+4+2cx^3+4cx+4x^2\)\(=x^4+2cx^3+x^2\left(c^2+4\right)+4cx+4\).
So sánh \(x^4+2cx^3+x^2\left(c^2+4\right)+4cx+4\) với \(x^4+ax^3+bx^2-8x+4\) ta được:
\(\hept{\begin{cases}2c=a\\c^2+4=b\\4c=-8\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}c=-2\\a=-4\\b=8\end{cases}}\).
Tương tự cho trường hợp \(d=-2\).
Đặt f(x) = x^4 + ax^3 + bx +b
xét f(-1)=0 và f(1) =0(vì f(x) chia hết cho a khi f(a) =0)
f(-1) = 1 - a -b + b = 1-a =0
+
f(1) = 1+a+b+b = 1+a+2b = 0
-------------------------------------------
=> 2+2b = 0
=> b= -1
=> 1+a-2 = 0
=> a=1
A là đa thức có hệ số cao nhất là 1
=> A là bình phương của đa thức: \(\left(x^2+cx+d\right)^2\)
Ta có:\(\left(x^2+cx+d\right)^2=x^4+2cx^3+\left(2d+c^2\right)x^2+2cdx+d^2\)
=> \(x^4-2x^3+ax+b=x^4+2cx^3+\left(2d+c^2\right)x^2+2cdx+d^2\)
Cân bằng hệ số hai vế ta có:
\(2c=-2;2d+c^2=0;2cd=a;d^2=b\)
<=> \(c=-1;d=-\frac{1}{2};a=1;b=\frac{1}{4}\)
Vậy : \(A=x^4-2x^3+x+\frac{1}{4}=\left(x^2-x-\frac{1}{2}\right)^2\)