Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A là đa thức có hệ số cao nhất là 1
=> A là bình phương của đa thức: \(\left(x^2+cx+d\right)^2\)
Ta có:\(\left(x^2+cx+d\right)^2=x^4+2cx^3+\left(2d+c^2\right)x^2+2cdx+d^2\)
=> \(x^4-2x^3+ax+b=x^4+2cx^3+\left(2d+c^2\right)x^2+2cdx+d^2\)
Cân bằng hệ số hai vế ta có:
\(2c=-2;2d+c^2=0;2cd=a;d^2=b\)
<=> \(c=-1;d=-\frac{1}{2};a=1;b=\frac{1}{4}\)
Vậy : \(A=x^4-2x^3+x+\frac{1}{4}=\left(x^2-x-\frac{1}{2}\right)^2\)
a/ Giả sử \(x^4+2x^3+3x^2+ax+b=\left(x^2+cx+d\right)^2\)
\(\Leftrightarrow x^4+2x^3+3x^2+ax+b=x^4+c^2x^2+d^2+2x^3c+2xcd+2dx^2\)
\(\Leftrightarrow x^3\left(2-2c\right)+x^2\left(3-c^2-2d\right)+x\left(a-2cd\right)+\left(b-d^2\right)=0\)
Áp dụng hệ số bất định, ta có :
\(\begin{cases}2-2c=0\\3-c^2-2d=0\\a-2cd=0\\b-d^2=0\end{cases}\) \(\Leftrightarrow\begin{cases}a=2\\b=1\\c=1\\d=1\end{cases}\)
Vậy : \(x^4+2x^3+3x^2+2x+1=\left(x^2+x+1\right)^2\)
b/ Tương tự
Ta có
x4 – 6 x3 + ax2 + bx + 1 = (x2+cx+dx2+cx+d)2 với mọi x
<=> x4+x3.2c+x2(c2+2d)+x.2cd+d2x4+x3.2c+x2(c2+2d)+x.2cd+d2 = x4 – 6 x3 + ax2 + bx + 1 với mọi x
Giải phương trình tương đương ( đồng nhất thức )
=> c = -3 ; a = 11 ; b = -6 ; d =1
Ta có: \(x^4+ax^2+2x+b=\left(x^2+x+1\right)\left(x^2-x+a\right)+\left(3-a\right)x+b-a\)
Để phép chia đề bài là phép chia hết thì phần dư phải bằng 0 với mọi x hay
\(\hept{\begin{cases}3-a=0\\b-a=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=3\\b=3\end{cases}}\)