K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\left(x+2\right)^4+\left(x+4\right)^4\)

\(=\left(x^2+4x+4\right)^2+\left(x^2+8x+16\right)^2\)

\(=x^4+16x^2+16+8x^3+8x^2+32x+x^4+64x^2+256+16x^3+32x^2+256x\)

\(=2x^4+24x^3+120x^2+288x+272\)

9 tháng 9 2018

1) \(2x^4+3x^3-x^2+3x+2=0\)

\(\Rightarrow2x^4+x^3+2x^3+x^2-2x^2-x+4x+2=0\)

\(\Rightarrow x^3\left(2x+1\right)+x^2\left(2x+1\right)-x\left(2x+1\right)+2\left(2x+1\right)=0\)

\(\Rightarrow\left(2x+1\right)\left(x^3+x^2-x+2\right)=0\)

\(\Rightarrow\left(2x+1\right)\left(x^3+2x^2-x^2-2x+x+2\right)=0\)

\(\Rightarrow\left(2x+1\right)\left[x^2\left(x+2\right)-x\left(x+2\right)+\left(x+2\right)\right]=0\)

\(\Rightarrow\left(2x+1\right)\left(x+2\right)\left(x^2-x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\\x^2-x+1=0\end{matrix}\right.\)

Ta có:

\(x^2-x+1\)

\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi x

\(\Rightarrow x^2-x+1\) vô nghiệm

\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-2\end{matrix}\right.\)

9 tháng 9 2018

3) \(\left(x+2\right)^4+\left(x+4\right)^4=16\)

Đặt x + 3 = a, ta được

\(\left(a-1\right)^4+\left(a+1\right)^4=16\)

\(\Rightarrow\left[\left(a-1\right)^2\right]^2+\left[\left(a+1\right)^2\right]^2=16\)

\(\Rightarrow\left(a^2-2a+1\right)^2+\left(a^2+2a+1\right)^2=16\)

\(\Rightarrow a^4+4a^2+1+2a^2-4a^3-4a+a^4+4a^2+1+2a^2+4a^3+4a=16\)

\(\Rightarrow2a^4+2.4a^2+2+2.2a^2=16\)

\(\Rightarrow2a^4+8a^2+4a^2+2=16\)

\(\Rightarrow2a^4+12a^2+2-16=0\)

\(\Rightarrow2a^4+12a^2-14=0\)

\(\Rightarrow2a^4-2a^2+14a^2-14=0\)

\(\Rightarrow2a^2\left(a^2-1\right)+14\left(a^2-1\right)=0\)

\(\Rightarrow\left(a^2-1\right)\left(2a^2+14\right)=0\)

\(\Rightarrow\left(a-1\right)\left(a+1\right).2\left(a^2+7\right)=0\)

\(\Rightarrow\left(a-1\right)\left(a+1\right)\left(a^2+7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a+1=0\\a^2+7=0\end{matrix}\right.\)

\(a^2\ge0\) với mọi a

\(\Rightarrow a^2+7\ge7\) với mọi a

\(\Rightarrow a^2+7\) vô nghiệm

\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+3-1=0\\x+3+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)

2 tháng 9 2020

\(\left(x^2-16\right)-\left(x-4\right)^2=0\)

\(\Rightarrow x^2-16-\left(x^2-8x+16\right)=0\)

\(\Rightarrow x^2-16-x^2+8x-16=0\)

\(\Rightarrow8x-32=0\)

\(\Rightarrow8x=0+32=32\)

\(\Rightarrow x=32:8=4\)

18 tháng 8 2019

(x+4)(x2-4x+16)

=x3+43=x3+64

7 tháng 7 2019

đề là gì? 

mk cần gấp

7 tháng 7 2019

x2.( x2 + 4 ) - x2 - 4

= x2.( x2 + 4 ) - ( x2  + 4 )

= ( x2 + 4 ).( x2 - 1 )

= ( x2 + 4 ) .( x - 1 ).( x + 1 )

21 tháng 7 2015

a/ = x4 + 36x2 +81 +12x3 + 108x + 18x2 + x4 +1 + 4x2 + 2x2 - 4x  - 4x3 -16 = 2x4 + 8x3 + 60x2 + 104x + 66 = 2(x4 + 4x3 + 30x2 + 52x + 33)

20 tháng 9 2021

\(=\left(4x^2\right)^2-1^2=\left(4x^2-1\right)\left(4x^2+1\right)\)

\(16x^4\)\(-1\)

\(16x^4\)\(+8x^3\)\(+4x^2\)\(+2x-8x^3\)\(-4x^2\)\(-2x-1\)

\(2\left(8x^4+4x^3+2x^2+x\right)\)\(-1\left(8x^3+4x^2+2x+1\right)\)

\(2x\left(8x^3+4x^2+2x+1\right)\)\(-1\left(8x^3+4x^2+2x+1\right)\)

\(\left(2x-1\right)\)\(\left(8x^3+4x^2+2x+1\right)\)

\(\left(2x-1\right)\)\(\left(2x+1\right)\)\(\left(4x^2+1\right)\)

Làm hơi tắt mong bạn thông cảm

30 tháng 10 2016

(x - 4)(x2 + 4x + 16) - x(x2 - 6) = 2

x3 - 64 - x3 + 6x = 2

6x = 2 + 64

6x = 66

x = 66 : 6

x = 11

x3 - 27 + 3x(x - 3)

= (x - 3)(x2 + 3x + 9) + 3x(x - 3)

= (x - 3)(x2 + 3x + 9 + 3x)

= (x - 3)(x2 + 6x + 9)

= (x - 3)(x + 3)2

5x3 - 7x2 + 10x - 14

= 5x(x2 + 2) - 7(x2 + 2)

= (x2 + 2)(5x - 7)

30 tháng 10 2016

mk cám ơn nhiều ạ

5 tháng 6 2017

Đặt biểu thức đã cho là A.

Ta có: 2A = (3 - 1) * (3 + 1) * (3^2 + 1) * .... * (3^64 + 1)

= (3^2 - 1) * (3^2 + 1) * ... * (3^64 + 1) (hằng đẳng thức a^2 - b^ 2 = (a+b)(a-b))

Rút gọn triệt tiêu ta được 2A=3^64 - 1

=> A = (3^64 - 1)/2