K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2021

Tại x = 16 => x +1 = 17

Thay vào A ta được:

A = x4 - (x+1)x3 + (x+1)x2 - (x+1)x + 20

A= x4 -(x4 + x3)  + (x3 + x2)  -(x2 + x) +20

A= x4 - x4 - x3 + x3 + x2 - x2 -x + 20

A= - x+20

Mà  x = 16

=> A= -16 + 20 = 4

Vậy A= 4 khi x =16

19 tháng 5 2016

1) theo đề bài ta có:\(\left(2^x-8\right)^3+\left(4^x+13\right)^3+\left(-4^x-2^x-5\right)^3=0\)

 Đặt 2^x-8=a;4^x+13=b; -4^x-2^x-5=c

=> a+b+c=0=> a^3+b^3+c^3=3abc=0

=> 3(2^x-8)(4^x+13)(-4^x-2^x-5)=0

=> 2^x-8=0;4^x+13=0;-4^x-2^x-5=0

tìm được x=3

2)ta có\(x^2-2xy+2y^2-2x+6y+5=0\)

<=>\(\left(x^2+y^2+1-2xy-2x+2y\right)+\left(y^2+4y+4\right)=0\)

<=>\(\left(x-y-1\right)^2+\left(y+2\right)^2=0\)

<=> (x-y-1)^2=0 và (y+2)^2=0

=> x=-1;y=-2

7 tháng 2 2019

Bài 1 :

Mình nghĩ phải sửa đề ntn :

\(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)

\(\Leftrightarrow\left[2\left(2x+7\right)\right]^2-\left[3\left(x+3\right)\right]^2=0\)

\(\Leftrightarrow\left[2\left(2x+7\right)-3\left(x+3\right)\right]\left[2\left(2x+7\right)+3\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\7x+23=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{-23}{7}\end{cases}}}\)

Vậy....

b) \(A=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

Đặt \(q=x^2+x+1\)ta có :

\(A=q\left(q+1\right)-12\)

\(A=q^2+q-12\)

\(A=q^2+4q-3q-12\)

\(A=q\left(q+4\right)-3\left(q+4\right)\)

\(A=\left(q+4\right)\left(q-3\right)\)

Thay \(q=x^2+x+1\)ta có :

\(A=\left(x^2+x+1+4\right)\left(x^2+x+1-3\right)\)

\(A=\left(x^2+x+5\right)\left(x^2+x-2\right)\)

\(A=\left(x^2+x+5\right)\left(x^2+2x-x-2\right)\)

\(A=\left(x^2+x+5\right)\left[x\left(x+2\right)-\left(x+2\right)\right]\)

\(A=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)

7 tháng 2 2019

Cảm ơn ạ><

13 tháng 6 2018

Ta có : 

\(4x\left(x-1\right)-3\left(x^2-5\right)-x^2=\left(x-3\right)-\left(x+4\right)\)

\(\Leftrightarrow\)\(4x^2-4x-3x^2+15=x-3-x-4\)

\(\Leftrightarrow\)\(x^2-4x+15=-7\)

\(\Leftrightarrow\)\(\left(x^2-2.x.2+2^2\right)+11=-7\)

\(\Leftrightarrow\)\(\left(x-2\right)^2=-18\)

Mà \(\left(x-2\right)^2\ge0\) \(\left(\forall x\inℝ\right)\)

\(\Rightarrow\)\(x\in\left\{\varnothing\right\}\)

Vậy không có giá trị nào của x thoã mãn đề bài 

Chúc bạn học tốt ~ 

12 tháng 2 2020

Ta có : \(\frac{x+14}{186}+\frac{x+15}{185}+\frac{x+16}{184}+\frac{x+17}{183}+\frac{x+216}{4}=0\)

=> \(\frac{x+14}{186}+\frac{x+15}{185}+\frac{x+16}{184}+\frac{x+17}{183}+\frac{x+200+16}{4}=0\)

=> \(\frac{x+14}{186}+\frac{x+15}{185}+\frac{x+16}{184}+\frac{x+17}{183}+\frac{x+200}{4}+4=0\)

=> \(\left(\frac{x+14}{186}+1\right)+\left(\frac{x+15}{185}+1\right)+\left(\frac{x+16}{184}+1\right)+\left(\frac{x+17}{183}\right)+\frac{x+200}{4}=0\)

=> \(\frac{x+200}{186}+\frac{x+200}{185}+\frac{x+200}{184}+\frac{x+200}{183}+\frac{x+200}{4}=0\)

=> \(\left(x+200\right)\left(\frac{1}{186}+\frac{1}{185}+\frac{1}{184}+\frac{1}{183}+\frac{1}{4}\right)=0\)

Vì \(\frac{1}{186}+\frac{1}{185}+\frac{1}{184}+\frac{1}{4}\ne0\)

nên x + 200 = 0

=> x = - 200

Vậy x = - 200

12 tháng 2 2020

Từ đề bài, ta có:

\(1+\frac{x+14}{186}+1+\frac{x+15}{185}+1+\frac{x+16}{184}+1+\frac{x+17}{183}+1+\frac{x+216}{4}=5\)

\(\Leftrightarrow\frac{200+x}{186}+\frac{200+x}{185}+\frac{200+x}{184}+\frac{200+x}{183}+\frac{200+x}{4}=5\)

\(\Leftrightarrow\left(200+x\right)\left(\frac{1}{186}+\frac{1}{185}+\frac{1}{184}+\frac{1}{183}+\frac{1}{4}\right)=5\)

Bạn xem có sai đề bài không ạ :D Thiết nghĩ vế phải phải là 5 chứ. Nếu đề bài đúng thì đến bước trên bạn tự tính nhé. Lười tính :) 

Chúc bạn học tốt!

8 tháng 7 2016

x=3

b,Dat an 2x^2-3x-1=a la dc

8 tháng 7 2016

a, \(4^x-10.2^x+16=0\Leftrightarrow\left(2^x\right)^2-10.2^x+16=0\)

Đặt \(2^x=t\Rightarrow t^2-10t+16=0\Leftrightarrow\orbr{\begin{cases}t=8\\t=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

b. Đặt \(2x^2-3x-1=t\Rightarrow t^2-3\left(t-4\right)-16=0\)

\(\Leftrightarrow t^2-3t-28=0\Leftrightarrow\orbr{\begin{cases}t=7\\t=-4\end{cases}}\)

Thế vào rồi giải tiếp em nhé.

21 tháng 7 2015

a/ = x4 + 36x2 +81 +12x3 + 108x + 18x2 + x4 +1 + 4x2 + 2x2 - 4x  - 4x3 -16 = 2x4 + 8x3 + 60x2 + 104x + 66 = 2(x4 + 4x3 + 30x2 + 52x + 33)

15 tháng 4 2020

\(\frac{2}{x-2}-\frac{3}{x+2}=\frac{x+1}{x^2-4}\left(x\ne\pm2\right)\)

\(\Leftrightarrow\frac{2}{x-2}-\frac{3}{x+2}-\frac{x+1}{x^2-4}=0\)

\(\Leftrightarrow\frac{2}{x-2}-\frac{3}{x+2}-\frac{x+1}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x+1}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{2x+4-3x+6-x-1}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{-2x-9}{\left(x-2\right)\left(x+2\right)}=0\)

=> -2x-9=0

<=> -2x=9

<=> \(x=\frac{-9}{2}\left(tmđk\right)\)

2 tháng 7 2018

\(A=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)

\(=x^3-8-x^3-3x^2-3x-1+3x^2-3\)

\(=-3x-11\)