Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(\dfrac{1}{x}+\dfrac{1}{x+2}+\dfrac{x-2}{x\left(x+2\right)}\)
\(=\dfrac{x+x+2+x-2}{x\left(x+2\right)}=\dfrac{3x}{x\left(x+2\right)}=\dfrac{3}{x+2}\)
Để 3/x+2 là số nguyên thì \(x+2\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{-1;-3;1;-5\right\}\)
1, \(x^3+8x^2+17x+10=\left(x^3+x^2\right)+\left(7x^2+7x\right)+\left(10x+10\right)\)
\(=x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)\)\(=\left(x+1\right)\left(x^2+7x+10\right)=\left(x+1\right)\left(x+2\right)\left(x+5\right)\)
2. \(2x^3-3x^2+3x-1=\left(2x^3-x^2\right)-\left(2x^2-x\right)+\left(2x-1\right)\)
\(=x^2\left(2x-1\right)-x\left(2x-1\right)+\left(2x-1\right)\)
\(=\left(2x-1\right)\left(x^2-x+1\right)\)
3. \(x^4+x^2+1=\left(x^4+1\right)+x^2=\left(x^2+1\right)^2-2x^2+x^2\)\(=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
4. \(81x^4+4=\left(9x^2\right)^2+2^2=\left(9x^2+2\right)^2-2.9x^2.2=\left(9x^2+2\right)^2-\left(6x\right)^2\)
\(=\left(9x^2+6x+2\right)\left(9x^2-6x+2\right)\)
\(\left(x^2+2x+3\right)\left(3x^2-2x+1\right)-3x^2\left(x^2+2\right)-4x\left(x^2-1\right)=3\)
a. (x-4)\(^2\)=x+1
⇔ x\(^2\) - 8x + 16 -x - 1 =0
⇔ x\(^2\) - 9x + 15 = 0
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{9+\sqrt{21}}{2}\\x=\frac{9-\sqrt{21}}{2}\end{matrix}\right.\)
b. 5.(x+3)+2x.(3+x)=0
⇔ (5+ 2x ) ( x + 3 ) =0
\(\Leftrightarrow\left[{}\begin{matrix}5+2x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-5}{2}\\x=-3\end{matrix}\right.\)
c. (x-4)\(^2\)-36=0
⇔ ( x - 4 - 6 ) ( x - 4 + 6 ) = 0
⇔ ( x - 10 ) ( x + 2 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-10=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
d. (7x-4)\(^2\)-(2x+1)\(^2\)=0
⇔ ( 7x - 4 - 2x - 1 ) ( 7x - 4 + 2x + 1 ) = 0
⇔ ( 5x - 5 ) ( 9x - 3 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}5x-5=0\\9x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{3}\end{matrix}\right.\)
a. (x-4)22=x+1
⇔ x22 - 8x + 16 -x - 1 =0
⇔ x22 - 9x + 15 = 0
⇔⎡⎣x=9+√212x=9−√212⇔[x=9+212x=9−212
b. 5.(x+3)+2x.(3+x)=0
⇔ (5+ 2x ) ( x + 3 ) =0
⇔[5+2x=0x+3=0⇔[x=−52x=−3⇔[5+2x=0x+3=0⇔[x=−52x=−3
c. (x-4)22-36=0
⇔ ( x - 4 - 6 ) ( x - 4 + 6 ) = 0
⇔ ( x - 10 ) ( x + 2 ) = 0
⇔[x−10=0x+2=0⇔[x=10x=−2⇔[x−10=0x+2=0⇔[x=10x=−2
d. (7x-4)22-(2x+1)22=0
⇔ ( 7x - 4 - 2x - 1 ) ( 7x - 4 + 2x + 1 ) = 0
⇔ ( 5x - 5 ) ( 9x - 3 ) = 0
⇔[5x−5=09x−3=0⇔[x=1x=13
Ta có : |1 - 5x| - 1 = 3
=> |1 - 5x| = 4
\(\Leftrightarrow\orbr{\begin{cases}1-5x=4\\1-5x=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x=1-4\\5x=1+4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x=3\\5x=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{5}\\x=1\end{cases}}\)