Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng t/c dãy t/s bằng nhau ta có:
x/3 = y/1 = x+y/3+1 = -6/5/4 = -3/10
x/3 = -3/10 => x = -9/10
10x = -9/10 x 10 = -9
\(\frac{x}{y}=\frac{3}{1}\Rightarrow\frac{x}{3}=\frac{y}{1}\)
x + y = \(-\frac{6}{5}=-1,2\)
\(\frac{x}{3}=\frac{y}{1}\Rightarrow\frac{x+y}{3+1}=-\frac{1,2}{4}=-0,3\)
10x = -0,3 . 3 . 10 = -9
x:y=3=>x=3y
=>x+y=3y+y=4y=-6/5 =>y=-6/5:4=-3/10=-0,3
=>y=-6/5-(-3/10)=-6/5+3/10=-9/10=-0,9
vậy x=-0,3;y=-0,9
nhớ tick
x : y = 3
=> y = 1/3 x
x + y = -6 : 5
=> x + y = -1.2
thay y = 1/3x ta có
x + 1/3 x = -1,2
4/3x = -1,2
x = -1,2 : 4/3
x = -9/10
=> 10x = 10 . -9/10 = -9
ĐÚng cho mình nha
Gỉa sử tồn tại hai số hữu tỉ x, y trái dấu ko đối nhau tm \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\) <=> 1 / x+ y = x + y / xy <=>(x+ y )^2 = xy (1) ( nhân chéo hai vế)
Do x và y là hai số hữu tỉ trái dấu nên xy<0 mà (x+ y)^2 lớn hơn hoặc bằng 0 với mọi x và y => (x+y)^2 >xy trái với (1)
Suy ra điều giả sử ko xảy ra => ko có hai số nào tm => đpcm
\(\frac{1}{x}+\frac{1}{y}=\frac{x+y}{x.y}\)
\(\Rightarrow\frac{1}{x+y}=\frac{x+y}{x.y}\Rightarrow x.y=\left(x+y\right)^2\)
khong thoa man vi x.y la so am con (x+y)^2 la so duong
Ta có: \(\frac{x}{y}\)= 3 => \(\frac{x}{3}\)= \(\frac{y}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}\)= \(\frac{y}{1}\)= \(\frac{x+y}{3+1}\)= \(\frac{\frac{-6}{5}}{4}\)= -0,3
\(\frac{x}{3}\)= -0,3 => x = -0,3 . 3 = -0,9
=> 10x = 10 . (-0,9)
=> 10x = -9
có\(\frac{x}{y}=3\Rightarrow x=3y\)
thay x=3y vào\(x+y=\frac{-6}{5}\)
có \(3y+y=\frac{-6}{5}\)
\(4y=\frac{-6}{5}\)
\(y=-\frac{3}{10}\)
\(\Rightarrow x=\frac{-9}{10}\)
vậy 10x=\(\frac{-9}{10}.10=-9\)