K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

Vì |x-1| ; |y-2| ; |z-3| đều >= 0

=> |x-1|+|y-2|+|z-3| >= 0

Mà |x-1|+|y-2|+|z-3| < = 0

=> |x-1|+|y-2|+|z-3| = 0

=> x-1=0 ; y-2=0 ; z-3=0

=> x=1;y=2;z=3

Vậy x=1;y=2;z=3

Tk mk nha

26 tháng 4 2018

qua de

27 tháng 12 2015

nhấn vào chữ đúng 0 phía dưới đi rồi biết!

27 tháng 12 2015

tick đi rồi tôi giải cho

14 tháng 8 2016

Ta có

\(\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|y+\frac{3}{2}\right|\ge0\\\left|x+y-z-\frac{1}{2}\right|\ge0\end{cases}\)

Maf \(\left|x-\frac{1}{2}\right|+\left|y+\frac{3}{2}\right|+\left|x+y-z-\frac{1}{2}\right|=0\)

\(\Rightarrow\begin{cases}x-\frac{1}{2}=0\\y+\frac{3}{2}=0\\x+y-z-\frac{1}{2}=0\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\x+y-z=\frac{1}{2}\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\\frac{1}{2}-\frac{3}{2}-z=\frac{1}{2}\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\-z=\frac{3}{2}\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\z=-\frac{3}{2}\end{cases}\)

28 tháng 7 2016

\(\left(x-1\right)^2+\left(3x-y-3\right)^2+\left(y+z\right)^4=0\)

\(\left(x-1\right)^2\ge0\)

\(\left(3x-y-3\right)^2\ge0\)

\(\left(y+z\right)^4\ge0\)

\(\left(x-1\right)^2+\left(3x-y-3\right)^2+\left(y+z\right)^4=0\)

\(\Leftrightarrow\left(x-1\right)^2=0;\left(3x-y-3\right)^2=0;\left(y+z\right)^4=0\)

  • \(x-1=0\Rightarrow x=1\)
  • \(3x-3-y=0\Rightarrow3\times1-3=y\Rightarrow y=0\)
  • \(y+z=0\Rightarrow0+z=0\Rightarrow z=0\)

Vậy \(x=1;y=0;z=0\)

Chúc bạn học tốt ^^