Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=1+2+2^2+....+2^{100}\)
\(\Rightarrow2A=2.\left(1+2+2^2+...+2^{100}\right)\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{101}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...2^{100}\right)\)
\(\Rightarrow A=2^{101}-1\)
Bài 2:
1: \(2A=2+2^2+...+2^{2011}\)
=>\(A=2^{2011}-1>B\)
2: \(A=\left(2010-1\right)\left(2010+1\right)=2010^2-1< B\)
3: \(A=1000^{10}\)
\(B=2^{100}=1024^{10}\)
mà 1000<1024
nên A<B
5: \(A=3^{450}=27^{150}\)
\(B=5^{300}=25^{150}\)
mà 27>25
nên A>B
a) Ta có : S = 5 + 52 + 53 + ... + 52006
5S = 52 + 53 + 54 + ... + 52007
5S - S = ( 52 + 53 + 54 + ... + 52007 ) - ( 5 + 52 + 53 + ... + 52006 )
4S = 52007 - 5
S = \(\frac{5^{2007}-5}{4}\)
b) Lại có : S = 5 + 52 + 53 + ... + 52006
S = ( 5 + 54 ) + ( 52 + 55 ) + ( 53 + 56 ) + ... + ( 52003 + 52006 )
S = 5 . ( 1 + 53 ) + 52 . ( 1 + 53 ) + 53 . ( 1 + 53 ) + ... + 52003 . ( 1 + 53 )
S = 5 . 126 + 52 . 126 + 53 . 126 + ... + 52003 . 126
S = 126 . ( 5 + 52 + 53 + ... + 52003 ) \(⋮\)126 ( đpcm )
Ta có : S = 5 + 52 + 53 + ...... + 52006
=> 5S = 52 + 53 + ...... + 52007
=> 5S - S = 52007 - 5
=> 4S = 52007 - 5
=> S = \(\frac{5^{2007}-5}{4}\)
b, ( 5^1 + 5^4 ) + ( 5^2 + 5^5 ) + .... + ( 5^2003 + 5^2006 )
= 5( 1 + 5^3 ) + 5^2( 1 + 5^3 ) + .... + 5^2003( 1 + 5^3 )
= 5 . 126 + 5^2 . 126 + .... + 5^2003 . 126
= 126 ( 5 + .... + 5^2003 )
=> chia hết cho 126
a ) S = 5 + 52 + .... + 52006
5S = 52 + 53 + ..... + 52007
4S = 5S - S = 52007 - 5
=> S = \(\frac{5^{2007}-5}{4}\)
b thì bạn gộp lại nhé , nếu k giải đk ib cho mình
a. \(A=\dfrac{1}{2}\cdot\dfrac{2}{3}+\dfrac{5}{10}\) \(B=\dfrac{7}{8}-\dfrac{1}{4}\cdot\dfrac{3}{2}\)
\(=\dfrac{1}{3}+\dfrac{1}{2}\) \(=\dfrac{7}{8}-\dfrac{3}{8}\\ =\dfrac{1}{2}\)
\(\Rightarrow A>B\)
b. \(C=\dfrac{2}{3}\cdot\dfrac{4}{5}+\dfrac{8}{15}-\dfrac{1}{15}\)
\(=\dfrac{8}{15}+\dfrac{7}{15}\\ =\dfrac{15}{15}\\ =1\)
\(D=\dfrac{1}{2}\cdot\dfrac{5}{6}+\dfrac{2}{3}\cdot\dfrac{3}{4}\)
\(=\dfrac{5}{12}+\dfrac{6}{12}\\ =\dfrac{11}{12}\)
\(\Rightarrow C>D\)
a, Ta có: \(3^{21}>3^{20}\left(1\right)\)
\(2^{31}>2^{30}\)(2)
Mà \(\left\{{}\begin{matrix}3^{20}=3^{2.10}=\left(3^2\right)^{10}=9^{10}\\2^{30}=2^{3.10}=\left(2^3\right)^{10}=8^{10}\end{matrix}\right.\)
Do \(9>8\Rightarrow9^{10}>8^{10}\Rightarrow3^{20}>2^{30}\left(3\right)\)
Từ (1);(2) và (3) ta suy ra \(3^{21}>2^{31}\)
a)\(3^{21}=\left(3^2\right)^{10}.3=9^{10.3}\)
\(2^{31}=\left(2^3\right)^{10}.2=8^{10}.2\)
Vì \(9^{10}.3>8^{10}.2\Rightarrow3^{21}>2^{31}\)
b)\(A=\dfrac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\)
\(A=\dfrac{1+5+5^2+...+5^8}{1+5+5^2+...+5^8}+\dfrac{5^9}{1+5+5^2+...+5^8}\)
\(A=1+\dfrac{5^9}{1+5+5^2+..+5^9}\)
A=\(1+1:\dfrac{1+5+5^2+...+5^9}{5^9}\)
\(A=1+1:\left(\dfrac{1}{5^9}+\dfrac{1}{5^8}+\dfrac{1}{5^7}+...+\dfrac{1}{5}\right)\)
Tương tự \(B=1+1:\left(\dfrac{1}{3^9}+\dfrac{1}{3^8}+\dfrac{1}{3^7}+...+\dfrac{1}{3}\right)\)
Vì \(\dfrac{1}{5^9}+\dfrac{1}{5^8}+\dfrac{1}{5^7}+....+\dfrac{1}{5}< \dfrac{1}{3^9}+\dfrac{1}{3^8}+...+\dfrac{1}{3}\)
\(\Rightarrow A>B\)
a, S = 2 + 22 + 23 + ...+ 220
2S = 22 + 23 +...+ 220 + 221
2S - S = 221 - 2
S = 221 - 2
b, A = 5 + 52 + 53 +...+ 596
5A = 52 + 53 +...+ 596 + 597
5A - A = 597 - 5
4A = 597 - 5
A = \(\dfrac{5^{97}-5}{4}\)